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Abstract—Data mining has heralded the major breakthrough
in data analysis, serving as a “super cruncher” to discover hidden
information and valuable knowledge in big data systems. For
many applications, the collection of big data usually involves
various parties who are interested in pooling their private
data sets together to jointly train machine-learning models that
yield more accurate prediction results. However, data owners
may not be willing to disclose their own data due to privacy
concerns, making it imperative to provide privacy guarantee in
collaborative data mining over distributed data sets.

In this paper, we focus on tree-based data mining. To begin
with, we design novel privacy-preserving schemes for two most
common tasks: regression and binary classification, where indi-
vidual data owners can perform training locally in a differentially
private manner. Then, for the first time, we design and implement
a privacy-preserving system for gradient boosting decision tree
(GBDT), where different regression trees trained by multiple data
owners can be securely aggregated into an ensemble. We conduct
extensive experiments to evaluate the performance of our system
on multiple real-world data sets. The results demonstrate that
our system can provide a strong privacy protection for individual
data owners while maintaining the prediction accuracy of the
original trained model.

I. INTRODUCTION

During the past few years, data mining has gained an
incredible popularity and influenced every aspect of our daily
lives. Massive data has been generated by a large number of
institutions such as governments, enterprises, hospitals and so
on. Data mining, a cutting-edge technique, can automatically
and intelligently assist us in discovering hidden information
and valuable knowledge in the vast amounts of data.

In many applications, the collection of big data often
involves multiple parties who have the incentive to pool their
private data sets together to train a more precise prediction
model. As shown in Fig. 1, a larger data set contributes
to a more accurate model, which motivates data owners to
cooperate, especially when the size of individual data sets is
small. For example, multiple hospitals may share the data
of patients to train a model that can be more effective in
diagnosing rare diseases. Unfortunately, the private data set
of each data owner may contain sensitive information that
can not be disclosed. A direct exposure may even violate
various privacy policies such as the HIPPA privacy rule [1].
Therefore, it is imperative to resolve the privacy issue to enable
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Fig. 1. A system overview of distributed data mining.

collaborative data mining over distributed data sets in real-
world applications.

Existing works on privacy-preserving data mining have
leveraged advanced cryptographic tools. A naive approach
is to encrypt data locally and then release the ciphertexts,
on which a handful of operations can be performed. As a
typical example, many works have adopted fully homomorphic
encryption [2] to secure private data in various data mining
tasks such as matrix factorization [3] and linear regression
analysis [4]. However, these solutions usually introduce high
computation overheads, which hinders their real applications
to very large data sets. Along another research line, differential
privacy [5], a new privacy model, has attracted much attention
owing to its efficient perturbation-based implementation. So
far, extensive research efforts have been devoted to designing
differentially private schemes for classic data mining tasks
such as linear regression [6], support vector machines [7],
decision tree [8], and neural networks [9].

Recent years have witnessed the success of tree-based data
mining that can deal with non-binary labels and non-linear
relationships [10], [11]. However, few state-of-art works have
addressed the privacy issues raised in a distributed computing
environment. Most of the existing schemes concentrate on
how to enable a single data owner to securely publish her
decision tree by using differential privacy [12], [13], [14].
Nevertheless, the typical application scenario where the data
scatter among multiple data owners is rarely considered and
investigated. Only a recent work [15] proposed a solution to
construct random trees in such a distributed scenario.

Motivated by the above observations, in this paper, we ad-
dress a more complicated and commonly-used tree-based data
mining technique, i.e., gradient boosting decision tree (GBDT)
in distributed environments. GBDT is an orthogonal approach



to random trees [15] in ensemble learning. In particular, we
focus on two representative data mining tasks: regression and
binary classification. We design two new privacy-preserving
schemes where differentially private regression trees can be
learned separately by each data owner by injecting calibrated
noises. We use the exponential mechanism to find the split
and utilize parallel composition to allocate the privacy budget.
On top of this, for the first time, we design and implement a
privacy-preserving system for GBDT such that different trees
trained by multiple data owners can be securely aggregated
into an ensemble without a third party, and the data miner
do not need to do any additional computations. Our experi-
mental evaluations verify that our system can provide a strong
privacy protection while achieving a high prediction accuracy
comparable to the original GBDT model.

In summary, we make the following key contributions:
• We design two novel privacy-preserving schemes that en-

able individual data owners to learn differentially private
regression trees for two representative data mining tasks,
i.e. regression and binary classification.

• We make the first attempt to construct a privacy-
preserving system for gradient boosting decision tree,
which can securely aggregate distributed regression trees
from different data owners into an ensemble.

• We extensively evaluate our system on multiple real-
world data sets, confirming that our system can achieve
the prediction accuracy of the original GBDT with guar-
anteed privacy.

II. RELATED WORK

Privacy-preserving data mining has attracted much atten-
tion over the last decades, and many techniques have been
developed to enable privacy preservation of data, such as k-
anonymity [16], perturbation-based schemes [17] and crypto-
graphic tools. Differential privacy was first proposed in [5] as a
new privacy-preserving paradigm that is provably secure with
a rigorous mathematical framework. It has been widely used
to design privacy-preserving schemes for data publishing [18]
and data mining tasks such as linear regression [6], support
vector machines [7], and neural networks [9].

Decision tree is a well-known learning technique for classi-
fication and regression tasks. Many variants of decision trees
have been proposed for different application scenarios, such as
ID3 [19], C4.5 [10], and CART [11]. The concept of ensemble
was proposed to aggregate multiple trees to one tree, which
can be realized by two representative algorithms: random
forest [20] and gradient boosting tree [21]. White-box model
is ideal for decision trees, but may cause private information
leakage. To address this problem, several differentially private
decision tree algorithms have been proposed. Blum et al. [22]
proposed a simple algorithm based on ID3 that breaks the
splitting function down into two queries for each feature
to satisfy differential privacy. However, in this early work,
too much redundant noise is added to the tree, affecting
its prediction accuracy. Friedman et al. [12] improved the
previous works by optimizing the queries based on the parallel

composition theory. Different splitting criteria are compared
and an effort has been made to split continuous features.
Zhu et al. [23] proposed a privacy-preserving data releasing
algorithm for decision trees. Rana et al. [13] and Fletcher et al.
[14] proposed differentially-private random forest to aggregate
trees, which can improve the generalization performance.
However, all these works focus on a single data owner who
wants to publish her decision tree without revealing private
information. So far, there is no consideration for the distributed
scenario where multiple data owners conduct collaborative
data mining.

To address the privacy issues in distributed environments,
Lindell et al. [24] proposed a solution that uses garbled
circuits [25] to choose the split features in ID3, which is
the simplest binary tree. Emecki et al. [26] implemented a
multi-party ID3 algorithm by secret sharing to utilize each
participant’s information gain. These solutions usually incur
high communication and computation costs. Moreover, they
are unable to handle more complicated decision tree algorithm-
s that have more features than just binary features. Du et al.
[27] partitioned one database into two parts and introduced
an untrusted server to construct the binary tree. Vadiya et al.
[15] proposed to construct privacy-preserving random trees for
both horizontally and vertically partitioned data sets. However,
none of the approaches in existing works are applicable to the
gradient boosting decision tree (GBDT), which is the main
focus of this work.

III. PRELIMINARIES

A. Differential Privacy

Differential privacy has become a standard privacy model
for statistic analysis with provable privacy guarantee [5]. It
ensures that the output of a query remains (almost) unchanged
no matter whether a single record in the database is tampered
or not. The formal definition of differential privacy is as
follows.

Definition 1 (ε-differential Privacy). Given any two data sets
D and D

′
with at most one different tuple, a randomized

function F guarantees ε-differential privacy if

Pr[F(D) ∈ S] ≤ exp(ε) · Pr[F(D
′
) ∈ S], (1)

where ε is a privacy budget. A smaller ε realizes a higher
privacy level by introducing more distortions to the protected
data.

Definition 2 (Sensitivity). For any function f : D → Rd, the
sensitivity of f w.r.t. D is

∆(f) = max
D,D′∈D

||f(D)− f(D
′
)||1, (2)

where D and D
′

have at most one different record.

For numerical queries, the Laplace Mechanism is a classic
method to achieve ε-differential privacy [5]. The main idea is
to add random noises drawn from Laplace distribution to the
output.



Theorem 3 (Laplace Mechanism). For any function f : D →
Rd, the Laplace Mechanism M for any data set D ∈ D

M(D) = f(D) + Lap(∆(f)/ε), (3)

where the noise Lap(∆(f)/ε) is drawn from a Laplace
distribution with mean zero and scale ∆(f)/ε, provides ε-
differential privacy.

For non-numerical queries, the exponential mechanism is
often adopted to randomize an output r in the output domain
R. Given a utility function u(D, r) that calculates a score for
each output r, the exponential function assigns an exponen-
tially larger probability of being selected to r that has a higher
score, such that the final output is approximately optimum with
respect to u.

Theorem 4 (Exponential Mechanism). Let ∆u be the sensi-
tivity of the utility function u: (D×R)→ R, the Exponential
Mechanism M for any data set D ∈ D,

M(D,u) = choose r ∈ R with probability ∝ exp(
εu(D, r)

2∆u
)

(4)
gives ε-differential privacy.

For a complex mechanism with multiple queries, two pri-
vacy budget composition theorems are widely used [28].

Definition 5 (Sequential Composition). If a series of priva-
cy queries Q = {Q1, . . . ,Qm}, in which Qi provides εi-
differential privacy, are performed sequentially on a data set,
Q will provide

∑
i εi-differential privacy.

Definition 6 (Parallel Composition). If a series of pri-
vacy queries Q = {Q1, . . . ,Qm}, in which Qi pro-
vides εi-differential privacy, are performed separately on
disjointed subsets of the entire data set, Q will provide
{max(ε1, . . . , εm)}-differential privacy.

B. Gradient Boosting Decision Tree

Ensemble learning is to process a learning task by train-
ing and aggregating multiple weak learners. Based on the
aggregation method of weak learners, ensemble learning can
be classified into two categories. One assumes that the weak
learners are independent and do not interact with each other,
e.g., random trees [15]; the other assumes that the weak
learners have strong dependencies on each other, e.g., gradient
boosting decision tree (GBDT) [21]. GBDT consists of two
main steps: training a regression tree (i.e., weak learners) on
each data set locally and then boosting them into a set of trees
in a specific order.

The regression tree of GBDT is constructed in a top-down
manner like most of the other decision tree algorithms. Its
goal is to find an estimation function f∗(x) that maps vector
x to label y to minimize the expected value of a certain
loss function L(y, f(X)). Starting from the root node, each
internal node (non-leaf node) finds the best split to partition
the set of records into two parts, each of which will be further
partitioned in the child node. Splitting aims at dividing records

of different classes into different parts while keeping records
from the same class in the same part. In other words, the
goal of splitting is to get a high purity gain that can be
numerically measured, e.g., by square error [21]. Assume there
are n records (xi, yi), i ∈ [1, n] in the training set, and yi is
the residual value, i.e., the difference between the estimated
value and the real value of yi. In the root node, the residual
is initiated to yi. The square error E can be computed as
E =

∑nc

i=1(yi − mean(yi))
2, where nc is the number of

records in the current node, and mean(yi) is the mean residual
of all nc records. Let Fp denote a feature and Vp,q denote a
feasible value of Fp. All the records in the current node can
be partitioned into two parts such that the records that satisfy
Fp < vp,q go to the left subtree, and the others go to the
right subtree. The gain from splitting the current node can be
defined as gain = E−EL−ER, in which EL and ER are the
square errors of residuals of the two subtrees. For any feature,
the best split is the one that maximizes the gain, and can be
computed by finding the optimal value v∗p,q from the set of
feasible values.

The essence of boosting is to approximate the residu-
al yi by the negative gradient of the loss function, i.e.,
−[∂L(y,f(xi))

∂f(xi)
]f(x)=fm−1(x). We can regard the training of one

of the ordered weak learners as an iteration. In each iteration,
we first estimate the residual by the above loss function, then
use the approximated residual to train the regression tree.
For each partition of a leaf node, we calculate an optimal
coefficient, which represents the step and the steepest-descent
step direction. The final result of boosting is an accumulation
of the updated predicted values in an apposite direction and
the steps in each iteration.

IV. PROBLEM STATEMENT

In this paper, we consider the problem of privacy-preserving
collaborative data mining using gradient boosting decision tree
(GBDT) over distributed data. Fig. 1 presents an overview of
our system, where multiple data owners agree on sharing data
sets to extract common knowledge, but do not want to reveal
any private information about their own data.

A. System Model

We assume that there are N participants (i.e., data owners),
and each of them has a sensitive data set for local training.
A data miner submits a request to train a model using m
features in all data sets, then all participants execute the
learning algorithm cooperatively by various queries without
data exchange and finally return the model M to the data
miner. Note that the data miner can be one of the participants,
or an external third party.

B. Threat Model

Without loss of generality, we assume that the communi-
cation security in the whole process is guaranteed by using
authenticated secure channels (which is orthogonal to this
work), and all participants are semi-honest, which means all
participants follow the protocol but may try to infer more
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Fig. 2. A differentially private regression tree.

information. We consider participant collusion as a potential
risk in our system, where a group of participants may collude
to infer information of other participants. Furthermore, the data
miner may also try to obtain additional statistic information
from the results.

Given the above security requirements, our goal is to design
a robust distributed computing system to jointly learn an
accurate model (i.e., GBDT) with multiple participating data
owners, while preserving privacy of each participant’s data
against semi-honest and (potentially) collusive participants.

V. PRIVACY-PRESERVING REGRESSION TREE

In this section, we introduce the details of our proposed
privacy-preserving schemes for two classical data mining
tasks: binary classification and regression. The key idea is
to leverage differential privacy to provide rigorous privacy
guarantee by using exponential mechanism to find the split
and parallel composition to allocate the privacy budget.

A. Differentially Private Regression Tree in Binary Classifi-
cation

Binary classification, one of the most common prediction
tasks, outputs a binary discrete value. Suppose that the training
set D has n tuples (x1, y1), (x2, y2), . . . , (xn, yn). For each
tuple, xi contains d features (xi1, xi2, . . . , xid). Without loss
of generality, we assume that yi lies in the scope of [0, 1].
Following the original work of GBDT [15], we choose the
negative binomial log-likelihood as the loss function:

L(y, f(x)) = log(1 + exp(−2yf(x))), y ∈ [−1, 1], (5)

where the prediction function f(x) is a mapping from x to
y. Unlike a single decision tree, a tree in gradient boosting
needs to evaluate the residual of each record to improve the
performance of the next round of training. Therefore, we use
steepest-descent method to minimize the loss function. The
negative gradient of the loss function can be viewed as the
descent direction [21]. In each iteration, the residual yi can be
approximated as the negative gradient of the loss function:

yi = −[
∂L(y, f(xi))

∂f(xi)
] =

2yi
1 + exp(2yifm−1(xi))

. (6)

The residual will be used to measure the gains of split in
each internal node. Note that each query will consume some

privacy budget. When the limit of total budget is hit, the data
miner is no longer allowed to submit any query. Therefore, it
is necessary to analyze how many queries are (at least) needed
to accomplish a task in order to avoid budget exhaustion.

We first consider a simple case where all features are
discrete. For each internal node including the root node, it
is necessary to find an optimal feature as a split to segment
the current node into subtrees. In our scheme, we obtain the
best split by utilizing the square error function to compute
each feature’s gain based on residual yi. With the exponential
mechanism, we can evaluate the gains of all features simulta-
neously in one query, and the best split can be derived with a
high probability. Furthermore, in each depth of the tree, all
sets of records in different nodes are disjointed, satisfying
the condition of parallel composition. The total number of
queries that will consume the privacy budget in internal nodes
is (d− 1), where d denotes the depth of the tree.

For the leaf nodes, we don’t need to split the records
any more. In conventional decision tree algorithms, only one
counting query is needed to return the class counts in all leaf
nodes simultaneously [12]. In the regression tree, however,
we need to find the optimal coefficient to update the descent
direction and the step in leaf nodes. We first estimate the
optimal coefficient γ as:

γjm = arg min
γ

∑
xi∈Rjm

log(1 + exp(−2yi(fm−1(xi) + γ))),

(7)
which can be approximated by a single Newton-Raphson step
as:

γjm =

∑
xi∈Rjm

yi∑
xi∈Rjm

|yi|(2− |yi|)
. (8)

For the binary classification task, to obtain the optimal
coefficient in Eq. (7), we need to process two queries in
each region produced by the tree: (i)

∑
xi∈Rjm

yi, and (ii)∑
xi∈Rjm

|yi|(2− |yi|). Since the regions represented by leaf
nodes are disjointed, the condition of parallel composition is
also satisfied, resulting in a reduction in the privacy budget
consumption. In summary, the total number of queries that
will consume the privacy budget is (d− 1) + 2 = d+ 1.

Based on the prediction function f(x), the prediction result
is a probability distribution that specifies the class that the
record belongs to:

P+(x) = p =
exp(2f(x))

1 + exp(2f(x))
=

1

1 + exp(−2f(x))
,

P−(x) = 1− p =
1

1 + exp(2f(x))
.

(9)

Now, we consider a more complicated case where features
are continuous values. Using a specific value as a split will re-
veal the private information of the record that bears this value.
In the previous work [12], the domain of continuous features is
partitioned into multiple subsets, and exponential mechanism
is applied to choose one subset as the split. Nevertheless, this
method will result in a re-allocation of privacy budget and
will affect the partition. The reason is that, during the process



Algorithm 1 Generating differentially private regression tree
Input: The training set D, the label y, the tree’s depth d,

and the total privacy budget ε.
Output: A privacy-preserving decision tree t(x) and an

optimal coefficient γ.
1: Allocate privacy budget ε1 for internal nodes.
2: Allocate privacy budget ε2 = ε− ε1 for leaf nodes.
3: Execute down-sampling on continuous features.
4: List all feasible values for all features in set S .
5: for current depth i = 1 to d− 1 do
6: for all feasible values v in set S do
7: Split records in value v into two parts L and R.
8: Calculate gain = ES − EL − ER.
9: end for

10: Sample the split by exponential mechanism such that
Pr[Selecting value v] ∝ exp( ε12∆gain).

11: end for
12: Calculate optimal coefficient γ with privacy budget ε2.
13: Return γ and the structure of the tree.

of choosing the best split for a node, GBDT will conduct an
exhaustive search of all possible values for each feature to
minimize (EL + ER), and then find the feature to maximize
the gain. Such a discretization step will disclose specific values
of these features. Therefore, we propose a trick of down-
sampling to partition the feasible domain. Assume there are
n concrete values in the domain d. We sort the n values in a
non-descending order, and calculate the average of every three
values, i.e., a1+a2+a3

3 , a4+a5+a6
3 , . . . , an−2+an−1+an

3 . This op-
eration reduces the size of domain d from |d| to |d|3 . Then we
use |d|3 to find the split. This method will cause a certain degree
of loss in finding the split, but can reduce the risk of privacy
leakage.

To fully achieve differential privacy, an important issue is
how much noise should be injected. Apart from the above
privacy budget ε, sensitivity parameter ∆ is another important
factor that should be carefully considered. For the internal
nodes, we need to provide the square error function for the
exponential mechanism. The sensitivity of square error is ∆ =
4 because the maximum of residual yi is 1 and the minimum
of yi approaches to −1. The sensitivity of both queries in
terminal nodes can be bounded by 1. If we divide ε into ε1
for internal nodes and ε2 for leaf nodes, the probability of
selecting vp,q is:

Pr[Selecting split vp,q] ∝ exp(
1

2∆
ε1u(D, gain)), (10)

and γjm will be perturbed as

γjm =

∑
xi∈Rjm

yi + Lap( 1
ε2/2

)∑
xi∈Rjm

|yi|(2− |yi|) + Lap( 1
ε2/2

)
. (11)

In this way, the differentially private regression tree is trained
locally and can be published with privacy guaranteed. Fig. 2
shows an example of our design.

B. Differentially Private Regression Tree in Regression

Regression, another classical task, is used to predict contin-
uous values. We will give a brief analysis on how to obtain
differentially private regression tree in regression analysis.

Different from the binary classification tree, we choose
negative binomial log-likelihood as the loss function:

L(y, f(x)) =
(y − f(x))2

2
. (12)

The residual can be approximated as:

yi = −[
∂L(y, f(xi))

∂f(xi)
]f(x)=fm−1(x) = yi − fm−1(xi). (13)

Therefore, the optimal coefficient can be calculated as

γjm = arg min
γ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ)

= arg min
γ

∑
xi∈Rjm

1

2
(yi − (fm−1(xi) + γ))2

= arg min
γ

∑
xi∈Rjm

1

2
(yi − γ)2 = avexi∈Rjm

yi.

(14)

In the last line of Eq. (14), since the goal is to find the
best predicted value to minimize the least square function, it
is reasonable to use the average of yi to approximate γ. Then,
we can use γ to estimate the predicted value.

The difference between the query for binary classification
and that for regression lies in the calculation of the optimal
coefficient. In Eq. (14), two queries are needed: (i) sum all
the residuals yi in this node; (ii) count the number of records
in this node. The sensitivities of both queries are 1, and the
privacy budget ε2 for leaf nodes should be further partitioned.
γjm can be perturbed as:

γjm =

∑
xi∈Rjm

yi + Lap( 1
ε2/2

)

count(yi) + Lap( 1
ε2/2

)
. (15)

The whole process of generating differentially private regres-
sion tree is summarized in Alg. 1, which can accommodate
both the regression and the binary classification.

Theorem 7. Algorithm 1 satisfies ε-differential privacy.

Proof. We divide the privacy budget into two parts ε1 and
ε2 for the internal and the leaf nodes respectively. As for the
internal nodes, all the nodes in one depth only consume the
privacy budget once due to the parallel composition. Thanks
to the exponential mechanism, there is only one query in
each node to find the split, thus the total number of queries
concerned for the budget consumption is (d − 1). For the
leaf nodes, since the records are partitioned into disjointed
subsets, the parallel composition can be applied. At each
leaf node, two queries are needed to evaluate the average of
residuals, thus a total of two queries should be considered for
budget consumption. By dividing ε1 and ε2 equally for (d−1)
depths and 2 queries, the total consumed privacy budget is
ε1
d−1 (d− 1) + ε2

2 2 = ε.



VI. PRIVACY-PRESERVING GBDT: OUR CONSTRUCTION

In this section, we formally present our privacy-preserving
system for gradient boosting decision tree (GBDT). We first
show the process of boosting, i.e., aggregating the above
differentially private regression tree into an ensemble. Then,
we discuss two important practical issues for our system.
Finally, we show how to speed up the boosting process to
make it more practical.

A. A Basic Approach for Boosting

We first observe that differentially private regression trees
have two properties: (i) releasing the structure of the tree to
other participants is convenient for both the releaser and the
adopter; (ii) regarding the tree as an independent decision tree
will not leak any privacy information. These two important
properties enable us to aggregate distributed trees by directly
publishing the tree’s structure.

In GBDT, the trees generated from different participants are
correlated, making the boosting more difficult. To begin with,
in the local training process, since the residual has a significant
influence on subsequent tree construction, all the trees should
be organized in a specific order before being sent to the data
miner. Our basic idea is that each participant maintains a set
of trees, and trains a new tree with privacy preservation based
on her own data set. Then she updates the set of trees and
sends them to the next participant in a predefined order. For
example, the first participant trains the first tree t1 and sends
the structure of t1 to the second participant, who uses t1 to
compute predictions on her own data and trains the second tree
t2 based on the results, then sends the two trees t1 and t2 to
the third participant. A prediction result can be obtained from
a trained tree by feeding a record as input and retrieving the
corresponding value from a leaf node. This process continues
until all participants are traversed or the number of iterations
reaches a predefined threshold. During the whole process, each
participant only needs to transmit the set of trees for once,
and the regression tree trained by each participant preserves
the privacy of her own data set. Alg. 2 gives a high-level
description of our design. For each participant, the process
can be represented as:

fm(x) = fm−1(x) +

J∑
j=1

γjmI(x ∈ Rjm), (16)

where Rjm is the region represented by leaf nodes.
Fig. 3 gives an illustrative example of our design. Trees are

transmitted through different data owners. Each data owner
trains a new tree with her own data based on previous trees
and tests its performance. The last data owner outputs the set
of all trees to the data miner.

B. Practical Considerations for Boosting

We consider two important practical issues that need to be
addressed for our proposed boosting scheme.

The first concern is the quality of the participant’s data.
Though we expect all participants to be equally capable to train

Algorithm 2 Constructing privacy-preserving GBDT
1: The data miner predefines the order of participants.
2: The data miner submits a request to the set of participants
S.

3: for each participant pi ∈ S do
4: if i=1 then
5: Construct a new differentially private regression tree.
6: Send the trees to the next participant.
7: else
8: Use the previous i− 1 trees to evaluate residuals for

her own data.
9: Construct a new tree with her own data set and

residuals with perturbation.
10: Send the previous i−1 trees along with the new tree

to the next participant.
11: end if
12: end for
13: The last participant returns all trees to the data miner.

a tree with the same effectiveness, it is obviously impractical
in real world. A malicious participant may tamper with the
steepest-descent step descent direction by providing a low-
quality tree. Therefore, a control should be imposed on each
participant. In our scheme, we adopt prediction accuracy to
measure a tree’s performance. Specifically, for the classifi-
cation task, the accuracy is the fraction of records that are
successfully predicted; for the regression task, accuracy is
measured by mean absolute error (MAE), defined as:

MAE =
1

n

n∑
i=1

|yi − f(xi)|. (17)

Using the prediction accuracy as the performance indicator
is reasonable, because data distributions are usually different
among participants, and a tree trained on one data set may not
be fitful for another data set. In addition, the learning process
of tree training may converge without significant improvement
after several iterations. Therefore, we can keep track of the
prediction accuracy to prevent over-training.

Another problem is when to terminate the iteration. We
refer to one round as n iterations from the first participant
to the last participant. To avoid omitting participants with
high-quality data, one whole round should not be interrupted.
We define advance as the performance improvement in one
round. Assume that a threshold p is predefined to measure the
advance. If the advance exceeds p, we deem that a new round
is necessary to further improve the result. Then the data miner
will transmit the set of trees obtained from the last participant
to the first participant for a new round. The process should be
terminated when the advance is smaller than p, which indicates
that the result is stable. It should be noted that each participant
should use disjointed subsets of data in different rounds to
meet the condition of parallel composition, otherwise it will
cause privacy leakage. However, the number of rounds needed
to reach a stable result is not known beforehand, making it
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Fig. 3. Privacy-preserving GBDT in Distributed Environment.

difficult for each participant to determine how to divide their
data set into subsets for multiple rounds of training. To address
this issue, in each round, we utilize half of the current data set
and then remove it from the current data set. For example, in
the first round, for each participant, we use and remove half
of the data set, and in the second round, we further bisect
the remaining data set. In this way, we can achieve a faster
convergence.

Privacy analysis. Theorem 7 has shown that each tree
satisfies ε-differential privacy, which means that a direct re-
lease of the tree will not reveal private information about
the corresponding data set, since no sensitive information can
be inferred from the structure of the tree. Furthermore, each
tree only depends on one participant’s data set, and different
trees use disjointed data sets. It should be noted that, different
from queries, using the trained tree for calculating residuals
is a mapping operation that is data-independent and will
not consume the privacy budget. Since each tree satisfies ε-
differential privacy, the final trained model of all trees satisfies
ε-differential privacy. In addition, collusion between two or
more participants cannot compromise the privacy, because they
can only gain knowledge of their own data sets but cannot
obtain the information of other participants.

C. Speeding up Boosting

From the above boosting process, we can see that the i-th
participant has to wait until all previous i−1 participants have
completed their training tasks. Without loss of generality, we
assume that all participants have the same computing power
and each participate only trains one tree on her data. For each
participant, let c1 denote the time of calculating the residual
using one previous tree and c2 denote the time of training
the new tree. The total time to complete the boosting for n
participants is:

c(n) = (0c1 + c2) + · · ·+ ((n− 1)c1 + c2)

=
n2 − n

2
c1 + nc2.

(18)

Thus, the time that the n-th participant has to wait for is

c(n− 1) =
n2 − 3n+ 2

2
c1 + (n− 1)c2.

With the growth of the number of participants n, this waiting
time will become quite long, affecting the performance and
the scalability of our system. Therefore, we propose a speed-
up mechanism for the boosting process to reduce the waiting
time. Our key idea is to achieve a certain degree of parallel
computation at the expense of a little additional communica-
tion cost.

We can see that the total time cost of the i-th participant can
be partitioned into three parts: (1) waiting for the previous i−1
participants; (2) using the i−1 trees to calculate residuals; (3)
training a new tree with her own data. The waiting time for the
(i−1)-th participant to train the (i−1)-th tree is indispensable.
However, there is no need to wait for the previous 1 ∼ i− 2
trees. It is possible for all participants to calculate residuals
using the previous i − 2 trees simultaneously. In order to
achieve this goal, after the i-th participant has trained a new
tree, she should send the tree to all the remaining n − i
participants rather than just the (i+1)-th participant. Once the
remaining n − i participants receive a tree, they can use the
tree to evaluate residuals immediately. As a result, The total
time to complete the boosting for n participants becomes:

c(n) = (0c1 + c2) + (1c1 + c2) + · · ·+ (c1 + c2)

= (n− 1)c1 + nc2.
(19)

The time that the n-th participant has to wait is reduced to

c(n− 1) = (n− 2)c1 + (n− 1)c2.

Note that the communication cost will increase. The number
of interactions between all participants will increase from
n − 1 to n(n−1)

2 . The time cost of sending trees to multiple
participants, however, is negligible. This is because each
participant still spends most of her time waiting for the new
tree trained by the previous participant, which is far more
than the time cost of sending trees. Moreover, sending trees
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Fig. 4. Comparison between baseline and modification

to all remaining participants incurs low communication costs
(less than several megabits in general) and can be executed
in parallel. It is worthwhile to achieve a higher efficiency
with a slightly increased communication cost. Fig. 4 shows
the tradeoff between computation and communication costs. In
Fig. 4, Baseline represents the basic scheme in Sec. VI-A, and
Modification represents the improved approach in Sec. VI-C.

VII. EXPERIMENTS

In this section, we evaluate the performance of our tree-
based distributed data mining system on three real-world data
sets for regression and classification analysis. We implement
our system on a machine with Intel Core i5-4460S CPU
2.9GHz and 12GB RAM running Windows 10, Python 3.5.

A. Data sets

We conduct experiments on 3 real-world data sets. The first
one is General Social Survey (GSS) that contains responses
related to marital happiness [29]. It contains 51,020 rows that
correspond to individuals with 11 attributes. The classification
task is to infer each interviewee’s response to the question
“Have you watched X-rated movies in the last year?”.

The second data set is US, collected by the Integrated Public
Use Microdata Series [30], which contains 600,000 census
records from the Unites States. There are 15 attributes in the
data set. The logistic regression task is to predict the Annual
Income of an individual using the rest of the attributes. The
two-class classification task is to classify whether or not the
individual’s annual income is greater than $50,000.

The third data set contains sale price information of houses
sold between May 2014 and May 2015 in the King County
(HSKC) [31]. There are 19 house features plus the price and
the id, along with 21,613 observations. We remove the id and
the date as they may not help with the classification task.
We also remove some other attributes, which have mostly
empty or discontinuous values, to reduce computation cost.
The regression task of this data set is to infer house sale prices.

We use mean absolute error (MAE) to measure the utility
of the regression analysis, and the fraction of successfully
predicted samples (accuracy) to measure the performance of
binary classification. For each data set, we normalize the
values of labels to the interval [-1,1]. In each experiment, we
restrict that the maximum depth of the gradient trees is 10,
and perform 5-fold cross-validation for 10 times and report
the average result.

B. Results

1) Number of Participants: We divide the three data sets
into 20 subsets, each of which has 1,000 records. We vary
the number of participants for training, and use the test set to
evaluate the final model. We set ε = 1. Fig. 5(a) shows the
accuracy of the binary classification with the data sets GSS
and US in different number of iterations. Fig. 5(b) shows
the MAE on the data sets US and HSKC. In both figures,
No-Priv means that there is no differential privacy noise.
It is obvious that the accuracy increases if the number of
involved participants increases. If there are more participants,
the prediction accuracy will be higher. In addition, the results
show that differential privacy has only a slight impact on the
accuracy.

2) Size of Participants’ Data: We divide the three data
sets into multiple subsets with different sizes, i.e. 100, 500,
1,000, 1,500, or 2,000 records. There are 10 subsets for each
size, so we can run ten iterations. We set ε = 1. As shown
in Fig. 6, given the same number of participants, if the size
of each participant’s data is larger, the final results in binary
classification and logistic regression will be more accurate.

3) The Selection of Rounds: As mentioned above, the
number of participants and the size of participants’ data have
a significant impact on the performance of our scheme. We
randomly select 10,000 records from GSS and from US, then
divide them into 5 subsets of 2,000 records. We set ε = 1.
We can observe that an increase in the number of rounds
can improve the performance, as shown in Fig. 7. Therefore,
a data miner who wants to work with a certain number of
participants should conduct more rounds, which will lead to
more iterations, but also a higher time cost.

4) Privacy Budgets: Sensitive data should have a smaller
privacy budget, which means more noise should be added.
However, the accuracy of the trained model will be reduced if
more noise is added to the data. We analyze the impact of the
privacy budget on the performance of our proposed scheme.
Figure. 8(a) shows the accuracy of the binary classification on
data sets GSS and US with different budgets, and Fig. 8(b)
shows the MAE on the data sets US and HSKC. As expected,
the performance deteriorates as the privacy budget becomes
smaller.

VIII. CONCLUSION

In this paper, we make the first attempt to design a privacy-
preserving system for distributed collaborative data mining
among multiple data owners without a third party. Focusing on
the gradient boosting decision tree, we carefully analyze the
tree construction process, and tailor the injected noise to real-
ize ε-differential privacy for all data owners. Then, we propose
a novel approach to securely aggregate the trees constructed
by different participants to realize the distributed data mining
system. The experimental results verify that our system can
achieve highly accurate predictions while providing rigorous
privacy guarantee. We believe that the design rationale and the
solutions developed in this paper will motivate more research
endeavors on privacy-preserving distributed data mining.
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