
Searching an Encrypted Cloud Meets Blockchain: A
Decentralized, Reliable and Fair Realization

Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, Kui Ren, and Minghui Li

Abstract

Enabling search directly over encrypted data is a desirable technique to allow users to effectively utilize encrypted data
outsourced to a remote server like cloud service provider. So far, most existing solutions focus on an honest-but-curious server,
while security designs against a malicious server have not drawn enough attention. It is not until recently that a few works address
the issue of verifiable designs that enable the data owner to verify the integrity of search results. Unfortunately, these verification
mechanisms are highly dependent on the specific encrypted search index structures, and fail to support complex queries. There
is a lack of a general verification mechanism that can be applied to all search schemes. Moreover, no effective countermeasures
(e.g., punishing the cheater) are available when an unfaithful server is detected.

In this work, we explore the potential of smart contract in Ethereum, an emerging blockchain-based decentralized technology
that provides a new paradigm for trusted and transparent computing. By replacing the central server with a carefully-designed smart
contract, we construct a decentralized privacy-preserving search scheme where the data owner can receive correct search results
with assurance and without worrying about potential wrongdoings of a malicious server. To better support practical applications,
we introduce fairness to our scheme by designing a new smart contract for a financially-fair search construction, in which every
participant (especially in the multi-user setting) is treated equally and incentivized to conform to correct computations. In this
way, an honest party can always gain what he deserves while a malicious one gets nothing. Finally, we implement a prototype of
our construction and deploy it to a locally simulated network and an official Ethereum test network, respectively. The extensive
experiments and evaluations demonstrate the practicability of our decentralized search scheme over encrypted data.

I. INTRODUCTION

Due to the increasing storage and computation resource demands, today’s organizations demonstrate a strong tendency to
outsource their data to remote servers like cloud service providers. Since the outsourced data may contain sensitive information,
the data owners usually opt to encrypt their data, e.g., financial transactions, medical records, before outsourcing to the server.
This in turn hinders the data utilization such as search operations frequently performed.

Since the pioneering work [1] on searchable encryption, much effort has been devoted to designing effective and efficient
mechanisms to enable search over encrypted data. In most existing works, the remote server is modeled as an honest-but-
curious entity [2], [3] who never tries to deviate from the prescribed protocol. In reality, however, a malicious server may return
partial answers or even non-matching documents (e.g., due to random failures). More seriously, any security breach and insider
attacker may illegally gain access to alter the computations performed over the data. This could happen when a successful
malware infection (e.g., email attachments, infected P2P media) on one host gives an attacker a high access authority. To
address these concerns, security designs against a malicious server are urgently needed to facilitate the wide application of
encrypted data search.

Recently, a few works have been focused on designing verifiable privacy-preserving search schemes where a data owner is
able to verify the integrity of search results. Nevertheless, their verification techniques (e.g., using MAC [4] or hash table [5])
are highly dependent on specific search schemes, and for now only support simple query expressions such as single-keyword
search. How to generically impose verifiability on the existing multifarious search schemes that support expressive queries
and complex data structures (e.g., similarity search [6] or graph data [3], [7]) remains unclear. More importantly, all existing
verifiable search schemes focus on detecting cheating behaviours, with no effective coping countermeasures (e.g., punishing
the cheater) followed up, which greatly hinders the wide adoption of their schemes. Taking the universal pay-per-use model
for example, in the worst case the data owner may end up with getting an incorrect result while losing money, whereas
the malicious server earns money with cheating. This obviously demands a more reliable realization of search schemes over
encrypted data with not only verifiability to detect misbehaviours of a malicious server, but also a built-in fairness mechanism
to protect the interests of the data owner.

To address the above concerns, we first observe that the main reason of possible cheating is that the centralized server is
too powerful without being supervised. Therefore, we propose to resort to smart contract, a newly emerging blockchain-based
decentralized computing paradigm in Ethereum [8] where all operations are transparent and reliable. Getting rid of a central
server, outsourcing search queries to smart contract yields a correct and immutable result, and requires no further verifications
by the data owner. It thoroughly eliminates our misgivings about a malicious adversary as long as the security of Ethereum is
guaranteed. To realize this goal, we, for the first time, propose a decentralized privacy-preserving search scheme Π, utilizing
the popular decentralized platform: the smart contract in Ethereum. To give an exemplary instantiation, we build Π on the
classic inverted index based searchable symmetric encryption schemes [5], [9], and design the corresponding smart contract to
circumvent various barriers (e.g., gas limitation) in Ethereum. We emphasize that our framework is a general one, and many

other solutions supporting complex expressiveness (e.g., similarity search) and structured data (e.g., graph) fit for our setting
as well and can be altered likewise to have their decentralized counterparts.

To further bridge the gap between theoretical viability and practical concerns of privacy-preserving search schemes, we
observe that the key incentive mechanism behind such applications in the real world is that the data owner wants to outsource
computation-expensive jobs to a worker (i.e., the remote server in cloud settings), and in return the worker obtains a certain
amount of monetary compensation accordingly. Therefore, we novelly use smart contract to create a fair reciprocal mechanism,
where the data owner receives correct search results as long as he honestly pays the money, and the worker earns the money as
long as he faithfully follows the protocol. Moreover, we consider a more complex scenario, i.e., the multi-user setting [2], [10],
where the data owner may tend to make a profit by publishing and sharing the database with legitimate users. We thus propose
a fair privacy-preserving search scheme Πfair, where a new smart contract is designed to trace monetary rewards, including
transaction fees, among involved parties in the multi-user setting. It ensures that the data owner gets paid as long as he reveals
the transcript which allows the other users to search the database, and the other users can get correct search results as long as
they pay the money.

In summary, we make the following key contributions:
• By leveraging the smart contract in Ethereum, we, for the first time, propose a decentralized privacy-preserving search

scheme Π to guarantee that the data owner receives correct search results and has no need to perform verifications in the
face of a malicious adversary.

• Based on Π, we novelly introduce the notion of fairness and propose a fair privacy-preserving search scheme Πfair such that
each participant, especially in the multi-user setting, is fairly treated and incentivized to conform to correct computations.

• We implement a prototype of our design and deploy it to a locally simulated network and an official Ethereum test network,
respectively. Extensive experiments and evaluations are conducted to demonstrate the practicability of decentralized search
schemes over encrypted data.

II. BACKGROUND

A. Smart Contract in Ethereum

Ethereum is a new promising blockchain-based decentralized computing platform [8], [11]. Its security is maintained by a
cryptographic chain of puzzles (or blocks). Miners in the Ethereum network validate and approve transactions while mining new
blocks. Mining a new block by successfully solving a designated cryptographic puzzle rewards the miners with newly-created
cryptocurrency and thus incentivizes them to mine more blocks. The correctness of the network is guaranteed by this incentive
mechanism. In general, Ethereum provides us with two appealing properties:
• Consensus. The entire network agrees on the rules to verify each transaction and block. The data stored and computations

executed on Ethereum must be consistent across miners and cannot be modified or denied.
• Transparency. Ethereum is a public network. All the stored data and executed computations are transparent to any users.

Therefore, Ethereum acts as a trusted base which is trusted for correctness and availability, but not for privacy.
Smart Contracts in Ethereum are applications with a state stored in the blockchain. They can facilitate, verify, and enforce

the process of a contract. Each smart contract, identified by a special address, consists of script code, a currency balance, and
storage space in the form of a key/value store. Once created and deployed to Ethereum, the contract’s code cannot be modified
forever even by its creator.

Gas System is a fantastic feature in smart contract. It is designed to mitigate Denial-of-Service (DoS) attack on the Ethereum
network. Specifically, the contract script is compiled into Ethereum opcodes and stored in the blockchain. Each opcode will
cost a certain pre-defined amount of gas [8]. When initiating a smart contract through sending a transaction, the sender has to
specify the available gasLimit that supports for execution, and the corresponding gasPrice that the sender is willing to pay
for each unit of gas. The transaction will get included in the blockchain successfully only when the balance of the sender is
larger than gasLimit× gasPrice.

B. Cryptographic Tools

In our constructions, we make use of variable-input-length pseudo-random functions (PRFs) which are polynomial-time
computable functions that cannot be distinguished from random functions by any probabilistic polynomial-time adversary.
Formal definitions of PRFs can be found in [12].

III. PRELIMINARIES

A. System Overview

In Fig. 1, we outline the architecture of our design. Our scheme consists of the following three algorithms:
• Setup(DB): The data owner takes as input a database DB and outputs a tuple (EDB,K, δ) where EDB is the encrypted

database, K is the secret key, and δ is the data owner’s state.

Ethereum

Token

Search

① Encrypted
Index

② Search Token

③

④ File id

Data
Owner

idid

⑤ Add/Del Token

⑥ Add Response
Add / Del

Index

Fig. 1. A system overview for our scheme Π.

• Search(K, δ, w; EDB): The data owner takes as input the secret key K, its state δ, and a search word w ∈ {0, 1}∗, and
the smart contract takes as input the encrypted database EDB. The smart contract outputs a set of identifiers while the
data owner has no output.

• Update(K, δ,op, id,Wid; EDB): The data owner takes as input the key K, the state δ, an operation op ∈ {add,del}, a
file identifier id, and a set Wid of distinct keywords, and the smart contract takes as input EDB. These inputs represent
the actions of adding or deleting a file with identifier id.

For ease of presentation, operations on the data documents are not shown in the framework since the data owner could easily
employ the traditional symmetric key cryptography to encrypt the data and then outsource encrypted data to any decentralized
file storage network like InterPlanetary File System (IPFS).

B. Notations

A database DB = (idi,Wi)
d
i=1 is a list of identifier-keyword pairs where idi ∈ {0, 1}l and Wi ⊆ {0, 1}∗. The set of

keywords of the database DB is W = ∪di=1Wi. The set of documents containing a given keyword w ∈ W is denoted by
DB(w) = {idi|w ∈ Wi}. We will always set m = |W| and N =

∑
w∈W |DB(w)| to be the number of distinct keywords and

the total number of keyword-document pairs, respectively.

C. Design Goals

Fairness. The fairness for privacy-preserving search is the key new property introduced in this paper. Our core observation is
based on the financial nature of the incentive mechanism behind such applications in the real world. Loosely speaking, our
notion of fairness guarantees:
• The data owner receives correct search results as long as he pays for his search jobs that are delegated to a worker, while

the worker earns money as long as he honestly follows the protocol.
• In the multi-user setting, in addition to the above requirements, the other users receive correct search results as long as

they pay for both their search jobs that are delegated to a worker and the access to the data owner’s data. The data owner
earns money as long as he reveals the transcript (e.g., search token).

In summary, fairness guarantees that each party involved is incentivized to do correct computations. If a party deviates from
the protocol, then he gets nothing.
Soundness. This property basically indicates that the server will get caught if it tries to deviate from the protocol. Usually
the existing works achieve this objective by letting the data owner conduct a series of verifications. In this paper, we extend
this notion to claim that the received search results are reliable and correct definitely, and thus no verification is needed on
the data owner.
Confidentiality. We should protect the confidentiality of data files or the query keywords from the adversary. Besides, we
aim to provide another strong security notion: forward privacy, indicating that the adversary does not learn if the newly-added
document contains a keyword that has been searched before.

IV. DESIGN CHALLENGES AND COUNTERMEASURES

Intuitively, any existing privacy-preserving search schemes can be directly adapted to decentralized environment by replacing
the central server with smart contracts. Unfortunately, some innovative features that guarantee the robustness and security of
smart contracts become obstacles instead in this adaption. In this section we present some main design challenges and summarize
the countermeasures at a high level.

A. Gas System

Gas Limitation. In Ethereum, each transaction that calls a function of a smart contract has an upper bound of consumed gas,
called gasLimit as described in Section II-A. Each operation, including sending/storing data and executing computations, has
a fixed gas cost. This restricts the designed function to have extremely limited computation steps and storage. Therefore, to
make the privacy-preserving search over a large database feasible, we are motivated to divide the database into smaller ones
and manage them individually. The general idea is as follows. In the setup phase where a large encrypted index is built, we
partition the encrypted index into several blocks and upload them to the contract with sufficient transactions such that each
transaction consumes less gas than gasLimit. To ensure correctness, the contract needs to align the data together in order to
return all matched results.

Gas Availability. In the smart contract, each transaction is also associated with a gasPrice that specifies the money the
sender is willing to spend to purchase the gas. It is required that the user who initiates the transaction has an account balance
larger than the gas cost for executing the transaction. Otherwise the transaction will abort intermediately while the consumed
gas cannot be refunded. Thus we should be very careful with the contract design with regard to gas cost. On the one hand, it is
critical to ensure that each functionality (e.g., Search, Update) in the contract incurs lower gas cost than the sender’s account
balance. On the other hand, we should keep pace with gas consumption in each phase such that fairness can be guaranteed
eventually. The need for gas availability indicates our protocol design in Section VII.

B. The Verifier’s Dilemma

In Ethereum, miners are required to check the validity of transactions. However, verifying transactions may become
significantly expensive when there are abundant and complex expressions in the smart contract. For rational miners, they
are thus incentivized to skip the verification of the expensive transactions so as to stay ahead in the race to mine the next
block. This phenomenon is called the verifier’s dilemma [13]. To mitigate this attack, we are motivated to reduce the computation
burden on the contract as much as possible.

Our first observation is that smart contracts support dictionary data type, and the main computation overhead lies in the
search phase. In light of this, we make use of dictionary to store the encrypted index (i.e., EDB) that leads the search time
complexity to be O(dw), where dw is the number of times that the keyword w has been historically added to the database.

Our second optimization is the utilization of packing method inspired by [9]. Specifically, we can pack multiple plaintexts and
encrypt the output to obtain one ciphertext with the same size. The search result is thus in blocks instead of individuals. Besides,
packing also helps us circumvent the above Gas Limitation since it greatly reduces the storage cost. We note that although [9]
claimed to use the packing method as well, it didn’t describe how to implement it explicitly. Our detailed construction can be
found in Section V.

V. OUR DECENTRALIZED CONSTRUCTION

In this section, we construct a decentralized privacy-preserving search scheme Π that achieves soundness as well as
confidentiality. Π is built upon existing pioneering inverted index frameworks (such as [5], [9]). We will show that our design
rationale can also be applied to other encrypted search schemes with expressive queries or complex data types in Section VIII.

A. Basic Construction

In Fig. 2, we give a formal description for Π. For simplicity, let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ, G : {0, 1}λ × {0, 1}λ →
{0, 1}∗ be two pseudo-random functions (Note that there should be different PRFs for different input keys). We use || to denote
the concatenation operation. “b·c” is a floor function, and “| · |” denotes the number of elements in a list. For a dictionary data
type, it includes two algorithms: Add and Delete. And we use term Get to fetch the specified data item in a dictionary. For
example, given a dictionary data type γ and an input label l, Get(γ, l) outputs the corresponding item d||r and parses it into
d and r.

In the Setup phase, the data owner divides the DB(w) into α+ 1 blocks, with each block of p entries. Here p is a system
parameter chosen by the data owner. We use concatenation to pack multiple file identifiers into one. To ensure confidentiality,
the bit length of ĩd should be less than that of the security parameter λ. Therefore, we have p ≤ λ

l , where l is the bit length of
the file identifier. Note that before uploading the database, the list L should be placed in lexicographic order. Otherwise it will
leak information about the order in which the input was processed. To avoid exceeding gasLimit, we partition the encrypted
database into n blocks and send them to the contract one by one with n different transactions. At the contract side, they are

Setup(DB):

1) The data owner initializes an empty list L, and an empty dictionary σ, and samples three keys K,KA,KD $←− {0, 1}λ.
2) For each keyword w ∈W:

a) K1 ← F (K, 1||w); K2 ← F (K, 2||w);
b) Set α← b |DB(w)|

p c, c← 0, where p denotes the number of file identifiers that can be packed.
c) Divide DB(w) into α+ 1 blocks. Pad the last block to p entries if needed.
d) For each block in DB(w):

- ĩd← id1||id2||...||idp; r $←− {0, 1}λ; d← ĩd⊕GK2(r); l← F (K1, c); c+ +.
- Add (l, d, r) to the list L in lex order.

3) Set EDB = L; Partition EDB into n blocks EDBi for 1 ≤ i ≤ n, and send them to the smart contract.
4) The smart contract initializes two empty dictionaries γ and γA, and an empty list IDdel.
5) For each received EDBi, the smart contract parses each entry in EDBi into (l, d, r), and adds each (l, d||r) to γ.

Search(K,KA,KD, w):
1) K1 ← F (K, 1||w), K2 ← F (K, 2||w), KA

1 ← F (KA, 1||w), KA
2 ← F (KA, 2||w), KD

1 ← F (KD, w).
2) The data owner sets c← 0, and estimates R and step.
3) For i = 0 to R:

a) Send search token ST = (K1,K2,K
A
1 ,K

A
2 ,K

D
1 , c) to the smart contract; Set c← c+ step.

4) The smart contract asserts that the estimated gas cost is lower than the balance, and then:
a) For i = 0 until Get returns ⊥ or i ≥ step:

- l← F (K1, c); d, r ← Get(γ, l); ĩd← d⊕GK2(r); c+ +; i+ +.
- Parse ĩd into (id1, · · · , idp); Assert idj /∈ IDdel (1 ≤ j ≤ p) and save idj to the state.

b) Assert γA has not been searched.
c) For c = 0 until Get returns ⊥:

- l← F (KA
1 , c); d, r ← Get(γA, l); id← d⊕GKA

2
(r); c+ +;

- Assert id /∈ IDdel and save id to the state.

Add(K,KA,KD, id,Wid) :
1) The data owner initializes an empty list LA, and then:

a) For each keyword w ∈Wid:
- K1 ← F (K, 1||w); K2 ← F (K, 2||w); KA

1 ← F (KA, 1||w); KA
2 ← F (KA, 2||w); KD

1 ← F (KD, w).
- r $←− {0, 1}λ; c← Get(σ,w); If c =⊥ then c← 0; l← F (KA

1 , c); d← id⊕GKA
2

(r); iddel ← F (KD
1 , id).

- Add (l, d, r, iddel) to LA in lexicographic order.
b) Send LA to the contract.

2) The smart contract initializes an empty list re of size |LA|, and parses each tuple of LA into (l, d, r, iddel), set i← 0.
3) For each tuple in LA:

a) if iddel ∈ IDdel, then re[i]← 1 and delete iddel from IDdel, else re[i]← 0 and add (l, d||r) to γA; i+ +.
4) The data owner reads re from the smart contract, and then:

a) For i = 0 to |re|:
- if re[i] = 0 then fetch the i-th keyword w in Wid; c← Get(σ,w); c++; Insert (w, c) into σ.

Delete(KD, id,Wid):
1) The data owner initializes an empty list LD, and then:

a) For each keyword w ∈Wid:
- KD

1 ← F (KD, w), iddel ← F (KD
1 , id); Add iddel to LD in lex order.

2) Send LD to the contract.
3) The smart contract adds iddel to IDdel for each element iddel in LD:

Fig. 2. Construction of our decentralized privacy-preserving search scheme Π.

received iteratively and placed together using the dictionary data type. Similarly, the search process will be completed with R
transactions, each of which returns step items at most. Here n, R and step are public system parameters and experimentally
determined.

In the Search phase, for each query, the data owner sends a transaction containing the search token to the designated smart
contract. Note that each contract has a unique address in Ethereum. With the search token and previously stored index, the
smart contract executes search algorithms and saves the search results (i.e., file identifiers) to its state, which is known publicly
including the data owner.

B. Supporting Dynamic Updates

Π supports dynamic updates as well. In the Add phase, we encrypt file id without using packing. This is because encrypting
several plaintexts into one ciphertext makes it hard for the contract to identify which file-keyword pair has been previously
deleted, i.e., whether it exists in the set IDdel. In addition, in reality changes often happen with only one or several documents
at one time. Update incurs much less gas cost than the Gas Limitation. Therefore, individually dealing with file id satisfies
the system requirements for update operations. For the protocol on the smart contract, we remark that transaction triggering
functions in the smart contract doesn’t return any results. Execution of any function only changes its state that is permanently
stored on Ethereum. We implement our scheme by saving search results into the state and later reading them on the data owner
side.

C. Forward Privacy

Forward privacy is an important security design goal in the literature. It means that the adversary does not learn if the
newly-added document contains a keyword that has been searched before. Inspired by recent progress [5], Π can be easily
extended to achieve forward privacy. The key idea is to use trapdoor permutation to make the search token unlinkable to the
update token. Specifically, when generating a label for the c-th entry in DB(w), instead of using a counter c that increases
itself, we use a trapdoor permutation π in a way that βc = π−1

sk (βc−1) and set the label as l = F (K,βc) where β0 is a
randomly-chosen integer. Then on the smart contract, it can only compute βc−1 = πpk(βc) with the public key in polynomial
time, but not βc+1 since it has no secret key. Therefore, the (c + 1)-th entry newly-added to DB(w) without having been
searched cannot be deduced from previously-leaked search token βc. This variant has the same communication complexity
with Π, and the computation overheads on the data owner and the contract increase a little caused by permutation computation.

VI. SECURITY PROOF

Soundness: It is straightforward to see that our scheme Π achieves soundness as long as the security of Ethereum is
guaranteed. This is because if the smart contract is correctly executed on Ethereum, the search results will be stored as contract
states permanently and publicly. Each miner in the Ethereum network can verify the data. The consensus property of Ethereum
ensures the correct execution of each search operation.

Confidentiality: To prove confidentiality, we follow the real-ideal simulation paradigm [9] and first proceed with the formal
definition of three stateful leakage functions L = (L1, L2, L3) considered in our construction.
• (Leakage function L1). Given an initial input DB, L1(DB) =

∑
w∈Wd

|DB(w)|
p e. Meanwhile, it initializes a counter i = 0,

an empty list Q, a set ID containing all the identifiers in DB, and saves them as the state.
• (Leakage function L2). Given a search input w, L2(in) = {sp(w,Q),DB(w),AP(w,Q, ID),DP(w,Q, ID)}, where sp(w,Q)

denotes the search pattern, AP(w,Q, ID) (resp. DP(w,Q, ID)) denotes the add (resp. deletion) pattern of the keyword w
with respect to Q and ID, all of which are defined below. Meanwhile, it increases i and appends (i, search, w) to Q.

• (Leakage function L3). Given an add update input (id,Wid), L3(in) = {add, |Wid|, (sp(w,Q), ap(id, w,Q),
dp(id, w,Q)) : w ∈ Wid}, where ap(id, w,Q) (resp. dp(id, w,Q)) denotes the add (resp. deletion) pattern of id, w with
respect to Q, both of which are defined below. Meanwhile, it increases i, appends (i, add, id,Wid) to Q and adds id to
ID. For a delete update input, the only difference is that L3(in) outputs del instead of add as the first component. Finally,
if any of the search patterns was non-empty, then it also outputs id.

Theorem 1. If G and F are pseudo-random, then our scheme Π is L-secure against non-adaptive attacks.

Proof Sketch: We describe a polynomial-time simulator S such that for any probabilistic polynomial-time (PPT) adversary
A, the outputs of its real execution RealΠA(λ) and simulated execution IdealΠA,S(λ) are computationally indistinguishable.
The simulator S is given leakage L to simulate the view of the adversary via imitating the real protocol. For example, to
simulate the initial EDB, S first chooses the keys K̃1, K̃2, K̃A

1 , K̃
A
2 , K̃

D
1 for each search at random with repetitions specified

by the search pattern. For all file ids associated with each search keyword w (i.e., id ∈ DB(w)), S computes l, d and r as
specified in real Setup (using K̃1 and K̃2 as K1 and K2), adds each pair (l, d, r) to a list L, and then adds random pairs
to L (still maintained in lexicographic order) until it has

∑
w∈Wd

|DB(w)|
p e total elements, and finally creates a dictionary γ̃.

Similarly, S is able to simulate the search/add/delete queries from leakage functions L. Our theorem thus holds due to the

 Deposit

 Keyword

 Search
Token

 Search
Result

Data Owner User

Smart Contract

Fig. 3. System model for our fair design in the multi-user setting.

pesudo-randomness of F and G. Π can be easily extended to achieve security against adaptive attacks by making use of
random oracle [9]. Formal proof is omitted here due to space limitation. �

VII. ENABLING FAIRNESS

In this section, we show how to use smart contract to construct a fair privacy-preserving search scheme based on Π. Our
definition of fairness is a variant from that in secure multiparty computation [14], and is inspired from recent works on
financial fairness [15]. We propose to achieve the goal that each party is financially incentivized to do correct computations,
and a dishonest party earns nothing if cheating in the end.

A. Single-user Setting

Our primary observation for fairness in privacy-preserving search schemes is that the key incentive mechanism behind such
applications in reality is letting the worker (i.e., the server in cloud settings) get monetary rewards in return for processing
the delegated search jobs. In light of this, all existing schemes may suffer from the situation where a malicious worker can
deviate from the protocol while still earning money if the data owner has paid first. On the other hand, a greedy data owner
also tries to make the worker perform search job without paying first. As a result, the worker may gain nothing for his effort.

Our basic scheme Π, on the other hand, has naturally guaranteed fairness. This is because whatever operations (e.g.,
Search,Update) the data owner wants to conduct, he has to pay cryptocurrency called Ether to the worker (i.e., the miner
in Ethereum) to purchase gas. And the smart contract is automatically executed on each miner and sets the state with correct
operation results, which can be read by the data owner.

We stress that existing verifiable search schemes [4], [5], [16] do not support fairness. They usually let the data owner pay
first before the worker handles the query and then verify whether the results are correct. In this case, however, the worker
can end up with earning the money while deviating the protocol. This is particularly unsatisfactory in an environment where
financial issues are involved.

B. Multi-user Setting

In the multi-user setting, where the data owner allows a third party (i.e., other authorized users) to search the database [2],
[10], things get much more complicated. This is due to the fact that the user is another mutually untrusted party, and we need
to ensure each party is fairly treated. Specifically, we need to ensure: 1) the data owner gets paid if the user searches the
database; 2) the user gets correct search results if he has paid the money. To this end, we modify the protocol Π to construct
our fair privacy-preserving search scheme Πfair.

Overview. Fig. 3 gives an overview of Πfair. Since everything on the smart contract is public, using existing techniques
such as broadcast encryption [10] to add and revoke users is not applicable because they require the worker to store a private
key. Thus we use the straightforward extension as indicated in [2]: the data owner receives the user’s query, and generates the
corresponding search tokens as if himself is searching the database.

Notation. Table I presents the primary notations for Πfair. We use $ to denote the cryptocurrency (i.e., Ether). $Bowner and
$Buser are unique Ethereum account balances of the data owner and the user, respectively. The data owner sets a price $offer
for each search, and the user makes a deposit $deposit for each search. The gas cost for executing search Gsrch is a system
constant. The gas limit for search GLsrch and the price for each unit of gas $gasPrice are specified by the data owner.

TABLE I
NOTATIONS FOR ΠFAIR .

$Bowner Balance of the data owner.
$Buser Balance of the user.

$deposit Deposit currency by the user.
$gasPrice Price for each unit of gas.

$offer Price for each search offered by the data owner.
GLsrch Gas limit for calling Search() function.
Gsrch Gas cost for calling Search() function.

Fair scheme Πfair: Protocol on smart contract.

FSetup():
1) Do Setup() as in Π.
2) The data owner sets a price $offer for each search.
3) The user makes a deposit $deposit from $Buser.
4) The user sets a time limitation T1.

FSearch(ST):
1) Assert that the transaction sender is the data owner.
2) Assert current time T < T1.
3) Assert $deposit > GLsrch × $gasPrice + $offer.

a) Call Search(ST).
b) Set $cost← $offer + Gsrch × $gasPrice.
c) Send $cost to $Bowner.
d) Set $deposit← $deposit− $cost.
e) Send $deposit to $Buser.

4) Assert current time T > T1.
a) Send $deposit to $Buser.

Fig. 4. Fair decentralized privacy-preserving search scheme.

Contract Design. Fig. 4 shows the contract design for Πfair. The Search() part of Πfair is exactly the same with Π. For
simplicity here we only use it as a subroutine, and use ST to denote the received search token and omit other details.

To ensure fairness, we set a time limitation T1 specified by the user. Within T1, the data owner is able to send the search
token to the contract and earn money. Beyond T1, the search request by the user gets expired and the user’s deposit will be
refunded. Note that one of the important conditions that allows the search is that the deposit should be larger than the price
of the data owner’s offer adding with the gas cost for executing Search() function. This is because the query transaction is
initiated by the data owner, and the gas cost will be deducted from the data owner’s account $Bowner. This is unfair since
the data owner triggers query transaction in place of the user. Therefore, the user has to pay extra fees to cover the gas
consumption. When the search terminates, the cost is sent to $Bowner. In particular, the remaining deposit should be refunded
to the user account $Buser immediately to prevent the data owner from running away with the deposit, by repeatedly sending
the query transaction with the same search token.

In our construction, the data owner can also send the search token to the user off-line and let the user himself initiate the
search transaction. In this case, the contract needs a slight modification: $deposit only needs to be larger than $offer, and
$cost is set to be equal to $offer. We recommend, however, transmitting and recording search token through smart contract
since it makes any cheating evident, and the contract can financially punish the data owner if he doesn’t reveal the search
token.

VIII. GENERALIZATION OF OUR FRAMEWORK

Recent works on privacy-preserving search have focused on increasing their expressiveness such as supporting similarity
search [6] or developing structured encryptions like graph encryption [3], [7]. All of them are also bothered with a serious
security challenge: a malicious central server can output partial or even incorrect results whenever it wants. To address this
concern, these works can be tuned into our decentralized setting likewise as long as the design challenges proposed in Section IV
are well addressed. The most intuitive observation of this extension is that smart contract actually provides us with a trusted and
transparent “server”. The main obstacle lies in dealing with various limitations of gas system in smart contract. Our proposed

TABLE II
EVALUATION DATABASE SIZES.

DB name (ω, id) pairs distinct keywords EDB
DB1 100, 763 22, 673 5.4MB
DB2 300, 617 54, 980 14.1MB
DB3 500, 567 75, 924 21.3MB
DB4 1, 000, 141 123, 912 39MB

TABLE III
EVALUATIONS IN TESTRPC.

DB name Setup Search Update
D.O. time S.C. time #Tx D.O. time S.C. time #Tx D.O. time S.C. time #Tx

DB1 9s 23min 350 ≈ 1ms 7s 1 ≈ 1ms 10s 1
DB2 15s 66min 1126 ≈ 1ms 8s 1 ≈ 1ms 10s 1
DB3 18s 114min 1703 ≈ 1ms 10s 1 ≈ 1ms 10s 1
DB4 23s 949min 3101 ≈ 1ms 16s 1 ≈ 1ms 10s 1

several countermeasures (e.g., dividing the encrypted index and conquering them individually, packing multiple identifiers)
throw light on how to address this issue. Once constructed using smart contract, soundness is naturally guaranteed and there
is no need to concern itself with a malicious server anymore. In addition, our designed smart contract in Fig. 4 provides a
template for all the multi-user settings to achieve fairness. Based on this, we are able to refine various complex conditions in
the contract according to specific real circumstances. For instance, in a scenario where the data owner would like to share his
photos with friends [10], the price $offer can be set to be 0 letting others freely search the database.

IX. IMPLEMENTATION AND EVALUATIONS

We implement a prototype of Π using a bit more than 5000 lines of code, including the test program. We instantiate the
data owner on a machine with 16GB of RAM, 4 Intel cores i7-3770, running Ubuntu 16.04.2. The smart contract is deployed
to a local simulated network TestRPC and also an official Ethereum test network Rinkeby, respectively. The data owner side
and the smart contract are written in Python and using Solidity in combination with Javascript as the intermediate interactive
language, respectively. We don’t particularly present the results for Πfair since it has comparable performance with Π in terms
of various evaluation metrics (e.g., time cost), and Πfair can be easily implemented by imposing a series of control conditions
on Π, without introducing notable costs.

A. Implementation Details

We implement PRF and random oracles using HMAC-SHA256. Since Ethereum currently does not support HMAC in-
stantiation, we follow the standard construction of HMAC [12] and implement HMAC-SHA256 using Python and Solidity,
respectively. To avoid exceeding gasLimit, in the setup phase the encrypted database EDB is divided into n subsets and sent
to the smart contract with n transactions. Due to the time-varying nature of gasLimit, we experimentally include 70 entries
from the list L in each transaction and set the pack number to be p = 8. In addition, each search query is also completed with
R transactions at most, each of them returns step = 47 items at most. In our experiments, R = 4 satisfies our requirements.
We use datasets derived from Enron emails which are a collection of plain text files. We extract a subset of emails and select
increasing subsets from the original subset as document collections with different numbers of (w, id) (i.e., keyword/identifier)
pairs. The key attributes of these datasets are summarized in Table II.

B. Experiments on Simulated Network

To demonstrate the scalability and unique performance characteristics of our design, we first use TestRPC to construct a
simulated Ethereum network locally. TestRPC is initialized with the default configuration, which is much like real Ethereum
environment except for that its block time for mining is set to be 0. This allows us to focus on the performance of search part
on smart contract, irrespective of time-consuming mining process and complex network circumstances (e.g., broadcast latency,
transaction mining delay) in Ethereum.

Table III presents an overview of time costs and transaction numbers for each phase on different datasets. Here D.O. and
S.C. represent the time costs on the ‘Data Owner’ and ‘Smart Contract’, respectively. #Tx stands for the number of transactions
needed to complete the corresponding phase. Search time is evaluated by returning 100 matched documents. Update overheads
are given by adding and deleting a file, the size of which is chosen to incur only one transaction. In the setup phase, different
from existing centralized search schemes where the data owner side dominates the efficiency, the time cost on smart contract
is much higher than that on the data owner. This is because storing EDB is completed with thousands of transactions, with
each transaction costing 4 seconds on average to be manipulated.

(a) Search time per matching document in TestRPC. (b) Setup: Gas usage of each mined block in Rinkeby.

Fig. 5. Efficiency evaluations in TestRPC and gas usage in Rinkeby.

(a) Search time vs. the number of matching documents (b) Update time vs. the number of transactions.

Fig. 6. Efficiency evaluations in Rinkeby.

To show the core algorithm, Fig. 5(a) presents the search time per found document varying with the number of matching
records. We report average run times over 30 trials. The first thing we can notice is that a larger result set yields a lower search
overhead (on a per matching document basis). We explain that by the constant cost of loading past mined blocks from disk
into memory before each search runs. This also explains our second observation: the larger the dataset, the slower the search
algorithm is. This is because a larger number of mined blocks leads to a longer time for loading.

C. Experiments on Official Test Network

To show the practicability of our scheme, we deploy Π to the official Ethereum test network Rinkeby that mimics the real
production network. Due to the limited balance, we only conduct experiments on the smallest database DB1. Our account and
contract addresses in Rinkeby are
• 0x7aef688b95a1bee573d464766b3a6c0470b9b57b.
• 0xecE97a98Da7f5DBECcb81E772dD04710e676Aa96.

To illustrate the impact of mining process on the efficiency, we record the block number of each transaction generated in
our setup phase and the corresponding gas usage, as shown in Fig. 5(b). In summary, it consists of 350 transactions, each
of which is mined into one block with block number ranging from 176, 837 to 177, 187. The average block time for mining
is 15s, resulting in 88min to complete the entire setup phase. This again explains why the time cost of setup is dominated
by the smart contract, instead of the data owner like in existing centralized search schemes. Besides, the average gas usage
for a transaction is 4, 201, 232. Currently 1 gas costs about 1.8 × 10−8 Ether, at the exchange rate of 89 USD at the time
of writing. So each transaction costs about 0.076 Ether (or 6.7 USD). At first glance, such cost may seem a little expensive
for ordinary users for ordinary searches, however, Π still applies to many real-world scenarios. For instance, personal medical
profiles are of significant importance for everyone. Getting a correct and complete medical history of a patient enables the

doctor to make a precise disease diagnosis and health evaluation. In these demanding cases, it is worth spending more for the
sake of retrieving highly reliable data.

Fig. 6(a) shows the total time needed to perform a search, given a search token (we neglect the cost of generating a search
token since it is a small constant in microseconds). Each point is the mean of 10 executions. It clearly demonstrates the
performance bottleneck of Π. To be specific, we can see that the search time grows with the increase of the number of
matching documents. But the sharp growth lies in the increase of the transaction number needed to complete the search step.
It indicates that the time cost of mining each transaction dominates the overhead for each search. On the contrary, search
algorithm has a faint impact on the efficiency. Generally the time cost of mining process is dynamically adjustable. When the
blockchain environment scales to allow a higher gas limitation or a faster mining process, our search efficiency increases as
well.

A similar situation occurs in Fig. 6(b) which describes time costs varying with the number of transactions needed to add/delete
a file. By choosing different sizes of files, we have update completed with different numbers of transactions. It again shows
that the mining process for each transaction is the dominant factor on the efficiency.

X. CONCLUSION

Traditional privacy-preserving search schemes rely on a central server to manipulate search jobs. In this work, we resort
to blockchain technologies and construct a decentralized design aiming at addressing malicious adversary. Different from
existing verifiable schemes, our search results are correct and immutable, and no verifications are needed on the data owner
side. Besides, we make use of smart contract to construct a fair privacy-preserving search scheme where each party, in the
multi-user setting particularly, is fairly treated and incentivized to do correct computations. Experimental results obtained on
our prototype demonstrate the practicability of our scheme.

ACKNOWLEDGMENT

Qian and Kui’s researches are supported in part by National Natural Science Foundation of China (Grant Nos. U1636219,
61373167, 61772236), and Outstanding Youth Foundation of Hubei Province (Grant No. 2017CFA047). Cong’s work is
supported in part by the Research Grants Council of HK under Project CityU C1008-16G, and the Innovation and Technology
Commission of HK under ITF Project ITS/168/17. Xiangyang’s research is supported in part by National Key Research and
Development Program (Grant No. 2016QY01W0105). Qian Wang is the corresponding author.

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in Proc. of S&P. IEEE, 2000, pp. 44–55.
[2] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced symmetric private information retrieval,” in Proc. of CCS. ACM, 2013, pp.

875–888.
[3] Q. Wang, K. Ren, M. Du, Q. Li, and A. Mohaisen, “Secgdb: Graph encryption for exact shortest distance queries with efficient updates,” in Proc. of

FC. Springer, 2017, pp. 79–97.
[4] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable encryption with small leakage.” in Proc. of NDSS, vol. 71, 2014, pp. 72–75.
[5] R. Bost, “σoϕoς: Forward secure searchable encryption,” in Proc. of CCS. ACM, 2016, pp. 1143–1154.
[6] Q. Wang, M. He, M. Du, S. S. M. Chow, R. W. F. Lai, and Q. Zou, “Searchable encryption over feature-rich data,” IEEE Transactions on Dependable

and Secure Computing, vol. PP, pp. 1–1, DOI: 10.1109/TDSC.2016.2 593 444, 2016.
[7] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “Grecs: graph encryption for approximate shortest distance queries,” in Proc. of CCS. ACM, 2015,

pp. 504–517.
[8] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.
[9] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner, “Dynamic searchable encryption in very-large databases: Data

structures and implementation.” in Proc. of NDSS, vol. 14. Citeseer, 2014, pp. 23–26.
[10] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, “Efficient encrypted keyword search for multi-user data sharing,” in Proc. of ESORICS.

Springer, 2016, pp. 173–195.
[11] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium blockchain for secure energy trading in industrial internet of things,” IEEE TII, DOI:

10.1109/TII.2017.2786307, 2017.
[12] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2014.
[13] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives in the consensus computer,” in Proc. of CCS. ACM, 2015, pp. 706–719.
[14] G. Asharov, “Towards characterizing complete fairness in secure two-party computation,” in Proc. of TCC. Springer, 2014, pp. 291–316.
[15] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model of cryptography and privacy-preserving smart contracts,” in

Proc. of IEEE S&P. IEEE, 2016, pp. 839–858.
[16] R. Bost, P.-A. Fouque, and D. Pointcheval, “Verifiable dynamic symmetric searchable encryption: Optimality and forward security.” IACR Cryptology

ePrint Archive, vol. 2016, p. 62, 2016.

