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Abstract—Autonomous vehicles (AVs) have promised to drasti-
cally improve the convenience of driving by releasing the burden
of drivers and reducing traffic accidents with more precise
control. With the fast development of artificial intelligence and
significant advancements of IoT technologies, we have witnessed
the steady progress of autonomous driving over the recent
years. As promising as it is, the march of autonomous driving
technologies also faces new challenges, among which security
is the top concern. In this article, we give a systematic study
on the security threats surrounding autonomous driving, from
the angles of perception, navigation, and control. In addition
to the in-depth overview of these threats, we also summarise the
corresponding defence strategies. Furthermore, we discuss future
research directions about the new security threats, especially
those related to deep learning based self-driving vehicles. By
providing the security guidelines at this early stage, we aim to
promote new techniques and designs related to AVs from both
academia and industry, and boost the development of secure
autonomous driving.

Index Terms—Autonomous Vehicles, Security, Sensors, In-
Vehicle Systems, In-Vehicle Protocol.

I. INTRODUCTION

Since the CMU Navlab group built the first computer-
controlled vehicles for automated driving in 1984 [1], many
researchers have promoted autonomous vehicle (AV) develop-
ments. One noteworthy breakthrough was in 1994, when the
group of UniBw Munich and the group of Daimler-Benz have
co-developed an AV that could reach the speed up to 130
km/h [2]. That very AV could automatically track different
lane markings and decide when to change between lanes.
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Fig. 1: The three types of attack surfaces of an AV.

Recently, with the prevalence of artificial intelligence (AI)
and Internet of Things (IoT) technologies, autonomous driving
has gained steady improvements, and is getting more and
more intelligent to precisely sense environments in the real
world, quickly analyze the sensor data, and autonomously
make complex decisions. In the foreseeable future, AVs are
widely believed to be one of the most popular AI applications
in people’s daily lives. For instance, IHS Markit predicts that
the annual sales of AVs will exceed 33 million in 2040 [3].

As promising as it is, the fast development of autonomous
driving technologies also faces new challenges, among which
security is the top concern. Specifically, before the wide
adoption of AVs on the road facing realistic traffic conditions,
the security and trustworthiness of AVs must be guaranteed
through all kinds of technical assurances. As we know, AVs
are often equipped with varieties of functionally-rich sensors,
such as cameras, Radars, GPS, etc., to perceive its surrounding
environments. The data captured by sensors are fed into the
AV’s computing system for rounds of complicated processing
and calculations in order to enable the autonomous control
of the vehicle, including the braking mechanism as well as
the engine. Hence, AVs heavily rely on the sensor data to
make the right driving decisions, which inevitably enlarges the
potential threat surface and incurs serious security risks from
sensors [4]. In addition, the systems responsible for in-vehicle
access and control (e.g., voice controllable systems and keyless
entry systems), and the protocols indispensable for in-vehicle
network operations (e.g., Controller Area Networks (CAN)),
also require effective security countermeasures against various
attacks whilst providing critical and decisive functionalities for
AVs.
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TABLE I: Various types of sensors.
Sensors Signal Working Area Principle Usage

GPS Microwave Global Passive Navigation

LiDAR Infrared laser Medium range Active Pedestrian detection
Collision avoidance

MMW Radar Microwave Long range Active Collision avoidance
Adptive cruise control

Ultrasonic Sensor Ultrasound Proximity Active Parking assistance

Camera Visible light Short range Passive
Traffic sign recognition

Lane detection
Obstacle detection

In Fig. 1, we briefly categorize the broadly defined security
threats surrounding an autonomous vehicle into three classes.
The first type contains different kinds of sensors equipped in
the vehicle, which perceive the surrounding road conditions.
The sensor data are further used to guide driving without
human intervention. Once they are jammed or spoofed by false
signals, the autonomous driving car will lose the ability of
precisely sensing the environments. The second one includes
various in-vehicle access and control systems, e.g., the vehicle
immobilizer, the keyless entry system, critical control com-
ponents, and the voice controllable system (VCS). These in-
vehicle systems guarantee the security of physical car access
and human-vehicle interaction. If these in-vehicle access and
control systems are broken, it would lead to critical security
flaws and incidents to AV, as serious as a matter of life and
death. The last is about the in-vehicle network protocols, such
as the Local Interconnect Network (also known as LIN), the
CAN mentioned above, FlexRay, and more. Any vulnerability
of the protocols could be exploited through telematics modules
and further magnified remotely by the attackers to illegally
control the vehicles.

In this article, we first give a systematic study on the cat-
egories of security threats, particularly from the perspectives
of perception, navigation, and control. We then respectively
summarize the corresponding defense strategies. Last but not
least, we highlight a few crucial open problems, especially
those related to deep learning based self-driving vehicles, and
discuss future research directions. We believe that our work
can encourage new techniques and designs related to defenses
against threats posed to AVs, and push forward the frontier
and future development of secure autonomous driving.

II. POTENTIAL THREATS OF SENSORS

When AVs cruise on the road, it is essential for AVs to
sense the environmental circumstances precisely, due to the
lack of drivers’ control. Various sensors, like GPS, ultrasonic
sensor, LiDAR (Light Detection and Ranging), and MMW
(Millimeter Wave) Radar, are “eyes” indispensable for AVs.
Fig. 2 illustrates sensors embedded in AVs, and Table I
shows a generic description of these sensors as well as the
corresponding usage scenarios for them. Armed with sensors,
AVs can achieve environment perception, collision avoidance,
obstacle/pedestrian recognition, navigation, etc. Considering
such high reliance on sensors, once sensors are blinded, or
even maliciously controlled, it may cause lethal catastrophes.

Ultrasound : Parking Assistance

Camera : Traffic Sign Recognition

LiDAR : Collision Avoidance

MMW Radar : Adaptive Cruise Control 

GPS : Navigation

Fig. 2: Sensors embed in autonomous vehicle.

In this section, we introduce various types of attacks against
most common sensors in AVs and provide some corresponding
defense strategies.

A. Various Types of Attacks

1) Attacks against GPS: GPS is indispensable in the navi-
gation of AVs. Relaying on position got from GPS and aided
by a precise map, AVs can choose an optimized, shortest
path from one location to another location, even without
any previous knowledge. This is essential for AVs to work
correctly without the assistance of drivers. Meanwhile, this
also exposes vulnerabilities to malicious attackers.

The attacks toward GPS have been studied widely in the
past decade [5]–[11]. Existing attacks, like [6], [9], [12], [13],
demonstrate that the GPS attacks are practical. There are
mainly two kinds of GPS attacks: spoofing and jamming. GPS
signals from satellites are weak due to long-distance traveling
[6]. Hence, the jamming attack is much easy to be launched
by using stronger signals in the same frequencies . In the
following part, we focus on introducing spoofing attacks since
they are more threatening than jamming.

Spoofing aims to drag victims off to incorrect position (and
time) by fabricating spurious signals which deviate the correct
position of victims. A simple strategy that could be easily
detected is to first jam the victim’s GPS receiver and make
it lose the lock of the signals. Then the attacker sends a
much powerful spurious signal to take over the signals from
satellites [6]. This attack is detectable since the victim’s GPS
loses signals or encounters an abrupt change [7]. A much more
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Fig. 3: Working principle of sensors using round-trip time of
signal to calculate distance. Here, v is the speed of the signal
in the air (like, sound: 340m/s, electromagnetic wave and
light: 3× 108m/s).

sophisticated strategy needs the attacker to be more patient [7],
[10], [11]. To mount an attack toward the victim, the spurious
signals of the attacker should synchronize on the signals from
the satellite. After synchronization, the attacker increases the
power of spurious signals, which makes the victim’s GPS lock
on spurious signals. Then, the attacker can manipulate the
position of the victim by changing spurious signals. Other
advanced strategies, like nulling, canceling GPS signals by
emitting negative signals accordingly [8], could also be used
to launch stealthy attacks.

In the aforementioned attack strategies, they mainly focus
on how to take over the victim’s GPS signals. A recent attack,
proposed by Zeng et al. [9], utilizes elegantly selected fake
position to guide the victim vehicle to drive into a pre-defined
location when the victim is using the navigation system (e.g.,
Google Map). This attack may be caught when the driver
involves, but is much more efficient with driverless AVs.

2) Attacks against LiDAR: LiDAR is an active sensing
device, and compared with the camera, it can work during the
whole day, neglecting the illumination condition. It also can be
used to recognize signs, lanes, etc., since these infrastructures
have retro-reflective surfaces [14]. With these strengths, almost
all of the AVs, excluding Tesla, are armed with LiDAR
for circumstance perception [15]. LiDAR senses obstacles
around by rotating the transceiver, emitting infrared lasers, and
calculating the distance of obstacles by measuring round-trip
time of reflected lasers (like Fig. 3). Several existing works
demonstrate that LiDAR is vulnerable to intentional attacks.

Petit et al. [16] first introduce an attack targeting at Li-
DAR embedded in AVs. In their attack, the attacker uses a
transceiver to receive the laser pulse sent from LiDAR and
relay the received signal to another transceiver, which sends
a spurious signal back to the LiDAR after delaying it in
a pre-defined time interval. By controlling the delayed time
interval and frequency of sending the spurious signal back,
the proposed attack could achieve injecting several obstacles
in fixed positions. Later, Shin et al. [15] extend Petit’s attack,
which allows injecting closer fake obstacles. They leverage the
fact that the LiDAR scans the environment through rotating
laser transceiver and the light travels much faster than the
rotating speed of LiDAR. Therefore, the attacker can receive
laser pulse in advance, and then immediately relay the laser
pulse to another transceiver in other angles of LiDAR. This
allows the attacker to make fake obstacles closer to him.
Besides, they also introduced a jamming attack by sending
the same frequency laser to LiDAR.

3) Attacks against MMW Radar: The system structure of
MMW Radar is very similar to LiDAR, as shown in Fig.
3, except the emitted signal. The MMW Radar emits the
microwave whose wavelength is longer than laser emitted by
LiDAR [17]. Comparing with LiDAR, the MMW Radar is
robust to poor weather conditions, e.g., storms, fog, and dust
[18]. However, due to the longer wavelength of MMW Radar,
the MMW Radar has lower resolution and shorter detectable
range. Currently, the MMW Radar is equipped in vehicles of
Tesla. In DEF CON 2016, Yan et al. demonstrate practical
attacks against Tesla Model S leveraging vulnerability of the
MMW Radar [4]. They conduct experiments on the jamming
attack by sending the same waveform signals to the MMW
Radar to cause lower signal-noise ratio (SNR), and thus
successfully launch the spoofing attack by carefully modu-
lating signals similar to the MMW Radar. In their study, it is
concluded that the experimental result is prominent, especially
when Tesla works on the autopilot mode. As for AVs merely
relaying on the MMW Radar to achieve obstacles recognition
and collision avoidance, it is indeed an non-trivial threat.

4) Attacks against ultrasonic sensor: The ultrasonic sensor
transmits and receives the ultrasound which is sound waves
with high frequencies that human beings cannot hear. Nor-
mally, most people cannot sense the sound with a frequency
higher than 18 kHz [19]–[21]. It leverages the propagation
time of reflected ultrasonic pulses to calculate the distance to
the nearest obstacles (see in Fig. 3). In AVs, this capability
enables ultrasonic sensors to be used for automatic or semi-
automatic parking. Similarly, spoofing and jamming are two
kinds of attacks threatening the ultrasonic sensor.

The spoofing attack tries to utilize the carefully crafted
ultrasound to create a forged obstacle. In [4], the spoofing
attack can create pseudo-obstacles when there is no real one
in the detection range. Conversely, if there are more obstacles,
this attack can easily cause confusions during AV’s decision-
making procedures. Beyond this work, in [22], Xu et al. further
demonstrate the effectiveness of the Adaptive Spoofing attacks
by creating virtual obstacles against off-the-shelf sensors as
well as those on-board ones equipped by AVs.

Simpler but still threatening, jamming attack aims to de-
crease the SNR of ultrasonic sensors by continuously emitting
ultrasound. In [4], [22], Audi, Volkswagen, Tesla, and Ford are
tested, and the result shows that jamming attack can mislead
the cars when the driver does not receive any warning about
obstacles. Another experiment in [22] shows that jamming
attacks work effectively against Tesla cars in the self-parking
mode, as well as those in the summon mode. In both cases,
the jammed car may ignore and hit obstacles.

Moreover, the approaches of acoustic quieting such as
cloaking and acoustic cancellation can be used for ultrasonic
sensor attacks.

5) Attacks against camera: In AVs, cameras are used in
many scenarios such as traffic sign recognition [33], lane
detection [34], obstacle detection [35], etc. Fatal accidents may
occur when the performance of the cameras is significantly
degraded, which is caused by attacks against the cameras.

Petit et al. [16] get the efficiency of blinding MobilEye C2-
270, a commercial camera system, with several light sources.
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TABLE II: Summary of defense strategies of attacks against sensors.
Defense strategies Principle Modification Extra hardwares Reference

GPS Signal check Checking signal inherent characters (like strength) No Case dependent [23]–[29]
Cryptography Encryption and authentication Signal No [30]–[32]

LiDAR

Redundancy Multiple LiDAR No Yes [15], [16]
Fusion Multiple kinds sensors No Yes [15], [16]

Modification Reducing receiving angle, pulsing laser multiple
times, shortening pulsing time interval

Device No [15], [16]

Randomization Randomly rotating or pulsing signal Device/Signal No [15], [16]

MMW Radar

Sanity check Impossibility of high-power microwave in real
world

No No [4]

Redundancy Multiple MMW Radars No Yes [4]
Fusion Multiple kinds sensors combination No Yes [4]

Randomization Randomly pulsing signal Signal Yes [4]

Ultrasonic sensor

Sanity check Impossibility of high-power ultrasound in real
world

No No [4]

Redundancy Multiple ultrasonic sensors No Yes [4], [22]
Fusion Multiple kinds sensors combination No Yes [22]

Randomization Randomly pulsing Signal Yes [22]

Camera Redundancy Multiple cameras cooperation No Yes [16]
Special optics Filter and photochromic lenses Device Yes [16]

It shows that leveraging a laser or LED matrix could blind
the camera. Petit et al. also prove that in the laboratory
environment, the attacker could continuously switch the light
on and off to confuse the camera.

In [4], Yan et al. successfully blind the camera by aiming
the LED and the laser light at the camera directly. In particular,
aiming the LED light at the calibration board, which is a
substitute of realistic scenes, would lead to the concealment
of specific areas. According to the results, radiating a laser
beam, even for just a short period of seconds in very close
distance (less than half a meter) against an AV’s camera, would
cause irreversible damage and thus disrupt the corresponding
autonomous procedures.

B. Defense Strategies

In this section, we list countermeasures proposed against
attacks of sensors. Table II presents a summary of defense
strategies against attacks aiming at different sensors. Detailed
descriptions of these strategies are introduced as follows.

1) Defense strategies for GPS: Numerous countermeasures
have been proposed to prevent GPS-targeted attacks.

For instance, the spurious signals appear different from
signals transmitted from the satellites. It could be used to
identify GPS attacks. Warner et al. detect attacks based on the
signal strength, the time interval between signals, and the clock
information of signals [23]. Wesson et al. utilize distortions
of correlation function in the receiver to identify validity of
GPS signal [24]. Other works [25]–[29] check the direction
of arrival (DoA), which uses the antenna array to alleviate
the attacks since DoA of GPS signals would show a distinct
carry-phase compared with spoofing signals.

Other methods introduce cryptographic techniques into GPS
signals for attack defense. O’Hanlon et al. [30] propose to
encrypt GPS L1 P(Y) code to judge whether a spoofing attack
is happening. Authentication strategies [31], [32] are also pro-
posed to ensure the signals are authentic, e.g., the navigation
message authentication (NMA), which embeds signature in the
signal from the satellites.

Alternatively, works in different fields of study can be
combined to achieve protection, like distance bounded protocol
[36], [37]. They measure and ensure the distance between en-
tities using cryptographic tools or computer vision techniques
by comparing road signs and buildings of the current position.

2) Defense strategies for LiDAR: To resist attacks targeting
at LiDAR, authors in [15], [16] list the following defense
strategies.

Modifying how LiDAR emits and receives laser is a promis-
ing way. If the attacker wants to perform attack successfully,
the spurious laser should be synchronized with the laser from
LiDAR. Emitting laser pulse multiple times (like, three times)
in one direction is efficient against an attacker who is not in
sync with the laser of LiDAR. In addition, since LiDAR only
accepts laser from a specific angle during rotating, reducing
receiving angle can mitigate the effect of attacks, but it also is a
trade-off of LiDAR’s sensitivity [38]. Another countermeasure
is to reduce the LiDAR receiving time, which reduces the
probing range of LiDAR. To ensure certainty, LiDAR defines
the receiving time, within which LiDAR receives incom-
ing lasers. Specifically, reducing receiving time leaves fewer
chances for an attacker to perform attacks, but also enables
the lasers, which is reflected from a further object, to be taken
invalid.

Another strategy is to introduce randomness while LiDAR
is working. Since LiDAR rotates the transceiver for scanning
circumstance around, LiDAR is designed to rotate in a random
speed and emit laser to a random direction to prevent attacks
proposed by [15]. In addition, making laser from LiDAR
more unpredictable by emitting randomized signals or emitting
signals in a random pulse interval is another efficient way
against attackers.

Finally, redundancy of LiDARs or multi-sensor fusion al-
lows AV to correct readings of LiDAR(s). It increases the cost
and complexity of the attacker, and meanwhile introduces extra
cost to customers due to installing new devices. In addition, in
the non-overlapped area, the attack can still be launched [15].

3) Defense strategies for MMW Radar: The authors in [4]
gave a discussion about how to confront attacks toward Radar.
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TABLE III: Representative targets of vehicle immobilizer attacks.
Target name Security scheme Vulnerabilities Type of attack Reference

Digital Signature System Challenge-response protocol Short secret key Spoofing [39]

Passive Keyless Entry and Start
system

LF RFID tag
Passive,

fake proximity
Relay [40]

Hitag2
48-bit LFSR &

a non-linear filter
malleability,
lack of PRG

Key-recovery [41]

Megamos
96-bit secret key &

PIN code

malleability,
lack of PRG,

invertibilty
Key-recovery [42]

Security protocol stack AES Key storage method Fault injection [43]

TABLE IV: Characteristics of typical attacks against keyless entry systems.
Attack type Vulnerable system Implementation complexity Countermeasure Defense complexity Reference

Jamming All remote Easy Be careful Easy [44]–[47]
Replay Fix-code remote Medium Cryptography Easy [44], [48], [49]
Relay Passive remote Hard Electromagnetic shield Medium [40], [44]

Cryptographic analysis Active remote Hard Improve cryptography Hard [50]–[52]

Firstly, they believe the jamming attack is easily detectable
since the jamming-like signal is rare in the real-world. When
Radar detects such signals, there is a high possibility that
Radar is under attack. Then, for resisting spoofing attacks,
they recommend introducing randomness into Radar’s signal.
Finally, they suggest sensor fusion strategy, namely using
different sensor reading to correct each other.

4) Defense strategies for ultrasonic sensor: In [22], two
approaches are proposed to defend against ultrasound sen-
sor attacks. The first one leverages the idea of shifting the
parameters of waveforms, and thus makes it possible to
authenticate the physical signals. The second approach uses
two or more sensors to detect attacks, recover the abilities
of obstacle detection or localize attackers. According to the
experiment, the two countermeasures can effectively defend
against ultrasonic sensor attacks.

5) Defense strategies for camera: Because of the vulnera-
bility of the camera caused by optical characteristics, it is diffi-
cult to build a completely secure camera system. Nevertheless,
Petit et al. [16] give some possible countermeasures. Redun-
dancy, removable near-infrared-cut filters, and photochromic
lenses can provide proper protection from different aspects
despite the fact that they may have limitations or introduce
new problems.

III. POTENTIAL THREATS OF IN-VEHICLE SYSTEMS

To facilitate the access control of the automated vehicles, it
is possible to deploy certificates to support the authentication
of the controllers. Next, we present the potential security
threats related to the in-vehicle access control systems, in-
cluding vehicle immobilizer, keyless entry systems, control
components and voice controllable systems. After that, we
investigate the countermeasures of the vulnerabilities.

A. Various types of attacks

Here, we introduce the attacks which target the in-vehicle
authentication systems.

1) Vehicle Immobilizer Attack: As a common anti-theft
device, the electronic vehicle immobilizer realizes electronic
security to prevent the start of the vehicle engine, unless the
corresponding key fob, also known as a transponder or physi-
cal security token, is used. In recent years, quite a few widely
used transponders in-car immobilizer industry are discovered
as insecure [39]–[42]. Table III shows the characteristics and
vulnerabilities of these schemes. Among them, Hitag2 and
Megamos are both broken due to the weaknesses in the designs
of the cipher [41], [42], including the lack of pseudo-random
number generators and the shortness of cipher’s internal states,
in comparison with the private key. In [41], vulnerabilities of
the Hitag2 cryptographic scheme are revealed, three crypt-
analytic attacks are proposed to retrieve the private keying
materials. By exploiting the malleability of the cipher and
the lack of a good-quality pseudo-random number generator
(PRG), the first attack manages to read the identity of the
transponder and recover keystream. The second attack is more
generic, which can be utilized to break the generic cipher
designs using linear feedback shift registers, which is also
known as LFSR. It is used to bypass the read protection
mechanism from the security token, and still successfully
retrieves the private keying materials in just 60 seconds. The
final attack attempt leverages the key observation that there
are dependencies across different authentication sessions with
the immobilizer of the car. Such dependencies can also be
exploited to extract the private keying materials, although at a
slightly lower rate, in the order of minutes, compared to the
second attack.

Similar to the reference [41], three attacks aiming at Meg-
amos are proposed in [42]. Apart from the vulnerabilities
mentioned before, the first attack leverages two new obser-
vations for the retrieval of the private keying materials: 1)
the cipher state successor can be invertible; 2) the multi-step
authentication protocol reveals bits of plaintext in the final
steps. The second proposed attack simply uses publicly known
default PIN code to retrieve the private keying materials within
a timeframe of half an hour. Moreover, the attacks in both [41]
and [42] use Time-Memory Tradeoff (TMTO) to reduce the
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time cost of secret key retrieval from days to hours, minutes,
and even seconds.

In 2010, an open protocol stack for the security of the car
immobilizer system was proposed. It controls the authenti-
cation functionality and uses off-the-shelf AES encryption.
Security vulnerabilities of the protocol stack are theoretically
analyzed in [53], and there are several types of implementation
attacks [43], [54], [55]. In reference [53], the authors discuss
the possibility of several attacks, including relay attacks,
tracking, denial-of-service attacks, replay attacks, spoofing
attacks and hijack of the communication sessions.

Apart from the potential vulnerabilities discussed in [53],
Takahashi et al. propose an invasive fault attack [43], which
exploits the secret key storage specifics of the security protocol
stack. Specifically, the secret key is replicated three times in
the key fob storage space.

For key fob authentication, the secret key’s all three copies
are used one by one, thus enhancing the robustness and the
availability of the immobilizer system. However, through fault
injections, the adversary can alter a part of the data at the
physical address of the very first secret key, while trying out
the remaining part of the secret key. By repeating the process
of fault injection and guessing with the other two secret keys,
the adversary can retrieve most bits of the secret key for AES,
and eventually retrieve the entire secret key with exhaustive
search.

2) Keyless Entry Systems Attack: While the vehicle immo-
bilizer system focuses more on starting the engine, the attacks
towards keyless entry systems mainly aim to break into the
car.

Entry system guarantees the safety of the properties inside
the vehicle. With the technological development, there are
three types of car keys: 1) traditional physical key; 2) remote
active keyless entry; 3) remote passive keyless entry and
start (also known as PKES). Features of the systems are
displayed in Fig. 4. The earliest physical key only allows
physically unlocking the door and starting the engine. The
key should be inserted into the lock hole, and there is no
electrical communication between the key and the vehicle. The
remote active keyless entry system is embedded into a key fob.
“Active” means that there are interactions between the user of
the key fob and the entry system. When opening/closing the
vehicle’s door, the user needs to press a button to generate
signals from a Radio Frequency (RF) transmitter. Then the
car receives the signals and authenticates the data with cryp-
tographic methods. However, some users may find searching
for the key and pressing the button disturbing. The remote
PKES system solves this problem by realizing keyless entry.
In this system, the user only needs to approach the car and
the door will open automatically. Moreover, the PKES also
supports automatic engine start, which means that when the
driver is seated, the engine is activated. The communication
between the key and the car relies on an LF RFID tag for
short-distance (≤2m) auto entry and start, and a fully-fledged
UHF (Ultra High Frequency) for remote-distance (≤100m)
door unlocking.

Here, we list several possible attacks on the keyless entry
systems. The features of the attacks are presented in Table IV.

Physical Key: 
Directly open

Remote Passive Entry:

Auto-open (<2m) 

Remote Active Entry: 
Press the button (<100m)

Fig. 4: Characteristics of typical entry systems.

Jamming attacks. Due to the wireless communication be-
tween the key and the car during the open or close process,
there are chances for the adversaries to jam the signal when
the user closes the door. When the user presses the “close”
button, the attacker can generate an interference signal to jam
the locking signal. The user is unaware of the fact that the door
remains unlocked and leaves so that the attacker can break in.
This method is reported in the news [45]. Technically, the jam-
ming method could be regarded as Intentional Electromagnetic
Interference (IEMI) [47]. Beek et al. [46] carry out a detailed
robustness study against interference through a series of ex-
periments about systems with such keyless entry. According
to their experiment setting, the key fob is 2m away from the
car and continuous wave interferences with the range from 420
MHz up to 460 MHz are generated to test the robustness of the
original signals. Results show that the two keyless systems in
their experiment are sensitive to interference with a bandwidth
of 5 MHz and 4 MHz, respectively and the interference can be
generated in a distance of 100m, which provides convenience
for attackers. Furthermore, the jamming attack does not require
any cryptographic or chip analysis, making it easy and cheap
to launch.
Replay attacks. A typical scenario of replay attacks is that
the thief eavesdrops and records the back and forth exchange
signal between a common key transponder and a correspond-
ing receiver on the car. For an unsupervised car, the attacker
can replay the recorded signal and open the door. However,
this kind of attack is not effective for most of the latest car
models because of the adoption of rolling code for the key
fob. In short, the rolling code keeps an incremental counter
and the encrypted code will change whenever the button is
pressed, which makes sure that an attacker cannot easily guess
the code and replay it. Nevertheless, replay attacks could be
integrated with other attacks. For example, the attacker can
jam and record the valid “close” code, then replay the code
after a break-in, after which the car is appropriately locked.
Furthermore, the attacker can keep eavesdropping, jamming,
recording the valid signals until she gets the expected signal
(for example, the owner gets frustrated when keeping failing
to open the door and leaves, as described in [48]) and then
the attacker can record the latest valid “open” code and open
the car [49].
Relay attacks. Relay attacks have been widely researched
and are prevalent within communication systems [56]–[58]. A
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TABLE V: Hidden voice attack techniques.
Attack name Method Attacker’s knowledge Range Inaudible (Y/N) Reference

Hidden voice commands Machine learning Black & white box < 3.5m N [59]
Dolphin Attack Hardware White box 2cm∼175cm Y [60]

Lipread Hardware White box < 8m Y [61]
Audio adversarial examples Machine learning White box N/A N [62]

>2m

>2m

Fig. 5: The model of relay attack.

relay attack can break the distance restriction in the commu-
nication system by placing devices between the signal sender
and receiver and relaying the signals between them. As for
our topic, the remote passive keyless entry and start system
enables the car owner, without looking for a key, to unlock the
car, which is convenient, however, vulnerable to relay attacks.
Recall that in a PKES system, when the key is near to the
car, e.g., 2 meters, the door will passively open. Moreover,
when the receiver detects that the key is inside the car, the
engine starts and then the driver can step on the gas and go.
Nevertheless, the protocol only depends on the communication
signals, not on the physical key. Alrabady et al. [44] first
exploit this weakness and described a two-thief model concep-
tually. Later, Francillon et al. [40] follow the idea and launched
the relay attack on the PKES system. The attacker places an
antenna close to the car door and another antenna near the
car owner and then the antennas can transfer the signals, as
shown in Fig. 5. Although physically the distance between the
key and the door is not short enough to complete the protocol,
the signals from the key transferred by the antennas fool the
receiver in the car and the challenge-response protocol can
complete. In their experiments, the attack is effective when
the key-side antenna is within 8m (in the best situation) from
the key and the distance of the antennas can be up to 3000 km,
which is practically effective. A typical scenario introduced by
the authors is that in the parking lot, say when the car owner
leaves the parked car, the car becomes unsupervised and often
out of sight. After that, one attacker attempts to move the car-
side antenna close to the door, and the other attacker with
key-side antenna can tail after the owner. In this way, it is
possible to establish the relayed communication between the
key fob, which is with the owner, and the parked car, which
is away from the key. Such communication could work as if
the key and the car are spatially close. Note that this relay
attack does not need to interpret or manipulate the signals,
and thus the cryptographic authentication could not help in
such scenarios.
Cryptographic analysis attacks. The aforementioned attacks
mainly aim at physical-layer communication, and they do not
consider the analysis of the signals. Another line of attacks

can be described as cryptographic analysis attacks against the
encryption and code algorithms in higher layers. The earlier
generation of the remote keyless system does not provide an
authentication mechanism. The code is fixed, and cryptography
is not involved. To enable authentication, in [63], the authors
propose to use rolling code techniques, which are effective
in defending against the most straightforward replay attack.
However, the Keeloq scheme is proven to be insecure against
cryptographic analysis [50] and side-channel attacks [51].
Apart from the inherent vulnerability in cryptographic pro-
tocol, the PCBs (Printed Circuit Boards) in the entry systems
can also be analyzed by attackers to steal the information in the
firmware. A solid research [52] investigates the widely-used
VW group remote control systems and succeeds in cloning a
targeted remote control by analyzing the cryptography used
in the schemes and eavesdropping the signals of the victim,
after which the adversary can break into the car. The attack
takes advantage of the vulnerability that most remote control
systems share the same master key. If the attacker gets the
PCBs and takes a deep insight into the firmware, there are
chances that she can figure out the structures of the codes, the
details of the cryptographic algorithms or even the encryption
key. With the global used master key, the attacker can then get
the counter by eavesdropping and decrypting the signal from
the victim. The authors also propose an attack on the Hitag2.
The correlation attack can recover the secret key in minutes.

3) Voice Controllable Systems Attack: Voice controllable
systems (VCS) are widely applied in in-vehicle access control
and the enhancement of the driving experience. As shown in
Fig. 6, usually, a VCS is constructed of three basic mod-
ules: 1) the voice capture module that records the ambient
voices and digitalizes it before the next stage, 2) the speech
recognition module that operates on the digitalized signals
and uses machine learning techniques to further understand
the instructions, and 3) the command execution to perform
the designated command. Recently, researchers focus on the
inaudible voice attacks, which are incomprehensible to humans
but recognizable to VCS as commands, thus control the
systems without being detected [59]–[62]. The attack schemes
are summarized in Table V.

In [60], the authors propose DolphinAttack, which exploits
the hardware properties of the audio circuits to insert hid-
den voice commands that are inaudible by the human. The
key idea of DolphinAttack is to modulate the regular voice
signal, which is often at low-frequency band, on an ultra-
high frequency carrier, also known as an ultrasonic carrier.
Doing so ensures the inaudibility of the voice commands.
Therefore, amplitude modulation is utilized to exploit the
nonlinear property of MEMS (Micro Electro Mechanical Sys-
tems) microphones which can down-convert high-frequency



8

ADC

Pre-process

Activated?
Y N

Speaker dependent 
speech recognition

Speaker independent 
speech recognition

ActivationCommand

Command Execution

Voice Capture

Sound

Speech Recognition

MEMS 
Mic

Amplifier

Filter

Fig. 6: The architecture of a typical VCS that takes voice
commands as inputs and executes corresponding commands.

signals to lower frequencies. Thus, with a carefully designed
input signal, the microphone with nonlinearity can recover the
wanted voice control signal. Though effective on major speech
recognition systems, DolphinAttack [60] requires vicinity to
the target devices, e.g., the attack can be launched from a
distance of 5ft to Amazon Echo. This is because the speaker
with the same nonlinearity can also produce audible lower
frequencies while playing the higher frequencies. Thus Dol-
phinAttack must be operated at low power, which constrains
the range of the attacks. To enlarge the range of a successful
breach, the inaudible attack system LipRead is devised in
[61]. To tackle the contradiction between the long range and
inaudibility, the authors use multiple speakers. The “signal
leakage” from an individual speaker is limited to a narrow low-
frequency band. By solving a min-max optimization problem,
the aggregated leakage can be kept under the human auditory
response curve. Following this methodology, the maximal
attack distance is improved to 8 meters in [61]. Furthermore,
the researchers also propose effective defense mechanisms
against such attacks, through identifying nonlinearity traces,
which is a feature often preserved in signals with commands
of hidden voice. In spite of their efficiency and innovation,
both DolphinAttack [60] and LipRead [61] require the attack
devices to emit ultrasound signals [64], which means the
adversary must carry a customized device. Since the range
of the inaudible voice command attack is still restrained, the
transmitter that produces special signals could still be noticed
by the targeted victim. This limitation hinders the feasibility
of the hidden voice command attacks.

B. Defense Strategies

There are several possible strategies to defend the afore-
mentioned attacks. The physical-layer attacks, especially the
attacks based on signal interference and signal transmission,
can be easily prevented by intentionally paying more attention,
where the countermeasures can be carried out by individu-

als. More complicated defenses include cryptographic update,
extra authentication and scheme modification, etc. Here, we
introduce these defenses and encourage readers to explore
more countermeasures.

1) Leave with caution: The simplest way to prevent the
jamming attack is to make the car owner assure that the door
is locked before she leaves, as advised in [65]. For remote
confirmation, light or sound could be used to indicate that a
car is locked properly. However, the countermeasure is only
effective for the jamming-only attack. If the attacker can replay
the “unlock” signal, the door will lock appropriately and the
remote confirmation method becomes insufficient. Hence, the
basic countermeasure is to make sure that the doors are locked
before moving away from the vehicle.

2) Block the source signal: An instant way to avoid relay
attack is to shield the key when it is not being used [40]. If the
key is shielded by a box, the antenna on the key-side cannot
receive and transmit the signal from the key fob. However, this
method brings inconvenience to the user because when she
wants to get into the car, she needs to take out the key, which
disables the most attracting advantage of the passive remote
keyless system. A similar countermeasure is to remove the
battery from the key so that the key will not send and receive
signals. Also, this method impacts the functionality of PKES.

3) Distance bounding: Distance bounding is a helpful
method to defend against the relay attack [66]–[68]. In a
distance bounding algorithm, rapid exchanges of messages are
conducted in order to verify the distance between the parties.
Only if the distance between the key fob and the car is proven
valid will the door open automatically. Francillon et al. [40]
give the sketch of the distance bounding solution to deal
with relay attack on PKES and discussed the implementation
details. The reason that the relay attack can work is that the
antennas can transfer the signals even if the parties are distant.
However, this may bring latency and a long latency is not
allowed in a distance bounding protocol.

4) Authentication improvement: Quite a few attacks on
the vehicle immobilizer and the keyless entry systems are
aiming at cracking the cryptographic protocols. One solution
is to improve the authentication mechanism. In other words,
a more secure cryptographic algorithm and key distribution
method should be used in nowadays remote keyless entry
systems. Fortunately, Amir et al. [69] have already presented a
more secure RKE (Remote Keyless Entry) architecture, which
can resist side-channel attacks. To improve the security level
for the control systems in practice, vehicle manufacturers
may make efforts to implement the state-of-the-art secure
mechanism on the new-designed cars.

5) Hidden Voice Detection: To prevent VCS against hidden
voice commands, various strategies have been introduced,
including device enhancement, signal analysis [60], audio
turbulence [70], [71] and liveness detection [72], [73], etc.

As introduced in Section III-A3, in its principle, the attacks
on VCS use the electronic devices to produce inaudible voice
commands, while the normal commands of controllers come
from live speakers. With this observation, the general defense
is to analyze the signals via standard signal processing tech-
niques, thus differentiating the attack signals from the normal
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TABLE VI: The comparison of in-vehicle protocols.
Bus CAN LIN FlexRay

Applications Engine control, airbags,
antilock break system, body

system

Body control(dorr locking,
lights, seat belts)

Multimedia and X-by-wire
(drive-by-wire, brake-bywire,

steering-by-wire)
Data Rate 1 MBit/s 20 kBit/s 10 MBit/s
Exposure Big Little medium

Architecture Multi-Master Single-Master Multi-Master
Access Control CSMA/CA Polling TDMA

Kind Event-triggered Subbus Time-triggered
Redundancy None None 2 Channels

Transfer Mode Asynchronous Synchronous Asynchronous/Synchronous
Physical Layer Dual-Wire Single-Wire Optical Fiber Dual-Wire

Preprocessing
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Fig. 7: The detection scheme based on pop noise.

ones. As introduced in [60], concrete methods in this line of
work can be classified as hardware-based ones and software-
assisted ones. A typical hardware-based approach would be
producing command cancellation. While on the software level,
it is also possible to extract unique features from signals.
In [70], similar ideas are discussed in the name of audio
turbulence and audio squeezing.

In [72], a specific method with targeted scenarios is elabo-
rated. Their basic idea is to identify the sound source. On that
account, the authors devise a liveness detection approach by
leveraging the pop noise. For instance, the pop noise could be
an explosive burst caused by the breath of a live speaker. When
replayed by a speaker, the adversarial audio cannot reproduce
the burst of airflow without real human breath. Hence, the pop
noise can be used to distinguish the adversarial audio from live
commands. As shown in Fig. 7, the defense scheme consists
of three different phases, which are preprocessing of signal,
the location of pop noise, and the detection of the attack,
respectively.

IV. POTENTIAL THREATS OF IN-VEHICLE PROTOCOL

With more and more requirements on automobiles to pursue
a comfortable and smart driving environment, the number of
on-board electronic devices increases dramatically, in which
Electronic Control Units (ECUs) are most significant. Hence,
the communications of ECUs is becoming more and more
complex. It is vital to take into account the security of in-
vehicle network communications [74], for example, in the Lo-
cal Interconnect Network (LIN), the Controller Area Network
(CAN) or the FlexRay. We present a brief introduction and

comparison of CAN, LIN, and FlexRay in Table VI. It ex-
poses vehicles to various attacks. Attackers can take arbitrary
control of multiple vehicles or even kill them with a remote
connection. Moreover, autonomous vehicles exacerbate these
threats because of the lack of human driving and monitoring.
This section presents the most recent in-vehicle network attack
and defense methods.

A. Various Types of Attacks

The in-vehicle protocols, including CAN, LIN, and FlexRay,
have drawn much attention from the attackers. In particular,
the research on the security of CAN bus has received extensive
attention. Recent studies have demonstrated that many attacks
have been launched against in-vehicle protocols, like spoofing
and DoS. We comprehensively analyze and introduce these
attacks on CAN, LIN, and FlexRay protocol.

With the increase of on-board electronic devices, CAN
protocol began the dominant communication method of motor
vehicles. CAN bus is famous for its advantages of multiple
masters, low cost, and high transmit rate [75]. However, CAN
protocol was designed without security consideration at the
beginning, and thus is vulnerable to some attacks, such as
injecting false messages into CAN bus. Here are five major
security threats inherent in CAN protocol.

• Broadcast nature. CAN protocol broadcasts the packet
into all nodes. Hence, all packets can be snooped by
the malicious node, which paves the way for malicious
attacks on CAN, such as replay attacks.

• No authenticator fields. Without authenticator fields, a
node cannot tell whether a packet is from a malicious
node. Thus, malicious nodes can easily impersonate other
nodes and tamper with data.

• No authenticator fields. Without authenticator fields, a
node cannot tell whether a packet is from a malicious
node. Thus, malicious nodes can easily impersonate other
nodes and tamper with data.

• Defective arbitration scheme. The CAN protocol utilizes
the CSMA/CA (Carrier Sense Multiple Access with Col-
lision Avoidance) methods and the priority-based arbitra-
tion scheme. Hence, malicious nodes can achieve the DoS
attack by repeatedly playing the high-priority message.

• Dangerous interface. The most dangerous and significant
interface is the on-board diagnostic (OBD)-II port, and
it is also a federally mandated port in the United States.
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TABLE VII: The different studies related to attacking on CAN.
Access Method Attack Method Attack Vehicles Attack Results Year Reference

Direct Access
Spoofing - braking, stopping the engine, disable the brakes 2010 [76]

Ford Escape and Toyota Prius steering, acceleration, braking and display 2013 [77]
DoS Honda Accord and Hyundai Sonata shutting down healthy ECU 2016 [78]

Remote access Spoofing
- controling brakes, engine, locks, uploading firmware, and exfiltering data 2011 [79]

Jeep Cherokee steering, braking 2015 [80]
Tesla Model S and Model X compromising CAN bus, achiving arbitrary code execution 2017 [81]

Then the CAN bus is accessed directly via the OBD-II
port, which is used for reprogramming and diagnostic.
These properties have abstracted much attention from
many attackers.

Moreover, researchers show that CAN bus is more vulner-
able than we expected. Karl et al. [76] demonstrate that the
attacker could be in control of many automotive functions, e.g.,
it can stop the engine, disables the brakes, brakes the wheels,
changes the display and so on, by directly injecting false
CAN message through OBD-II. As the automotive driving
system gets smarter, it has more and more I/O interfaces and
is therefore potentially vulnerable to attack. Stephen et al. [79]
comprehensively analyze the vehicle attack surface. It em-
pirically demonstrates that the post-compromise I/O interface
can be remotely triggered to control any vehicle function and
filtering data. Similar to [76], [77] can control the steering,
acceleration, braking and display on Ford Escape and Toyota
Prius.

However, in the aforementioned attack methods in or-
der to control the vehicle at will, reverse-engineering is
required to understand the meaning of packets. However,
reverse-engineering is hard and relies on different vehicles.
Cho et al. [78] present a new kind of DoS attack, called
the bus-off attack, exploiting the error-handling method that
automatically isolates misbehaving or defective ECUs in CAN
protocol. Specifically, bus-off attack iteratively injects false
messages to deceive a healthy ECU into believing itself
defective. Finally, it can trigger the CAN fault confinement,
forcing the attacked ECU or more severely the entire network
to close down. This attack does not require reverse-engineering
packets that make it easy to mount.

The most famous attack is [80], which leads to a recall of
about 1.4 million Jeeps. This is the first time a vehicle has been
attacked through a remote connection without direct access to
the bus. Nie et al. [81] remotely attack the Tesla Model by
utilizing a complex chain of vulnerabilities, including previous
vulnerabilities in the IT field. We summarize the above attacks
in Table VII.

1) LIN: The LIN bus is an inexpensive serial communi-
cations protocol, which is intended to complement the CAN
bus. The LIN bus is commonly used for vehicle body control,
such as seats and doors. Although the threat of the LIN bus
attack is not as significant as that of CAN bus attack, it also
poses considerable security risks to high-speed cars. A brief
introduction about security on the LIN bus is provided [82].

The LIN bus is broadcast and comprises master-slave nodes
(one master and typically up to 15 slaves). The master node
initiates a header containing the identifier (ID), and at most one
slave node replies to the given identifier. Because the master
initiates all communication, it is not necessary to implement

a collision detection algorithm. Hence, the defective error-
handling mechanism is used to attack LIN bus [83]. In the
LIN error-handling mechanism, the normal sender node stops
the packet transfer when the collision is detected. It creates an
opportunity for the malicious nodes to send a false message
to replace the valid one.

2) FlexRay: FlexRay has a reputation for next-generation
automotive communications protocols, but it is not used as a
replacement for CAN bus and LIN bus. It meets the future
communication demands of high data rates, low-cost, high
stability, and flexible data communication. FlexRay is a time-
triggered protocol. It employs Time Division Multiple Access
(TDMA) in order to prevent bus contention and achieves real-
time redundant communication. Like the CAN bus, FlexRay
bus also lacks data confidentiality and authentication mecha-
nism. Hence, it is easy to perform the read and spoof attacker
action [84].

B. Defense Strategies
As mentioned above, CAN has some major limitations.

Therefore, most current defense methods are to circumvent
these limitations.

1) Gateway Installation: Gateway is a common and effec-
tive defense method. Wolf et al. [85] introduce the gateway in
the automotive bus system. Within the in-vehicle network, the
central gateway-based architecture has been transformed into
a backbone-based architecture [86]. The gateway transfers the
message from various ECUs, which also provides the func-
tions of protocol conversion, message verification, and error
protection. It acts as the interface for vehicle communication.
In addition, the gateway also includes the firewall mechanism,
which increases the difficulty of access to the bus through
vehicle attack surfaces. For example, the attack message
cannot be directly injected into the in-vehicle bus by the
OBD-II port. The gateway can manage the data transmission
between the low-speed bus and high-speed bus.

2) Encryption Scheme: One of the necessary steps to en-
hance bus communication security is to encrypt data transmis-
sion. Wolf et al. [85] utilize cryptographic tools and present
a secure communication scheme for automobiles which com-
bined symmetric and asymmetric encryptions to achieve high
performance and adequate security. Lu et al. [87] present
encryption and obfuscation techniques to prevent code tam-
pering and data sniffing. The Obfuscation is a cost-effective
method against reverse engineering. Moreover, to effectively
encrypt the data transmission between external memory and
the ECU internal memory, the on-the-fly decryption is intro-
duced. Woo et al. [88] utilize AES-128 and keyed-hash MAC
together for encryption and authentication, finally reducing the
bus load.
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3) Authentication Mechanism: Nilsson et al. [89] present
delayed data authentication using MACs. However, problems
associated with the communication cost also arise. A vote-
based technique [90] integrated with time-triggered authentica-
tion is proposed to reduce authentication latency and improve
bandwidth efficiency. This technique uses unanimous voting
on the message validity and value among a set of nodes to
decrease the probability that a per-packet forgery succeeds.
Instead of independently authenticating each node, Groza
et al. [91] present the lightweight broadcast authentication
protocol (LiBrA-CAN), which splits the authentication key
between any two groups of nodes. The assumption that the
compromised nodes are only a minority is practical. MAC
is considered on the AUTomotive Open System ARchitecture
(AUTOSAR) in 2017. MAC can effectively prevent unautho-
rized CAN messages because the attackers do not have the au-
thentication key. However, the attack on MAC is implemented
[92].

Moreover, the error frame transmission [93]–[95] is pro-
posed to prevent unauthorized CAN message. The basic idea
is that when a node detects an unauthorized message, the node
sends an error frame immediately to override it before the
receiving node receives it.

4) Anomaly Detection: Anomaly detection [96]–[98] on
CAN is developed from anomaly packet detection on the
Internet. Larson et al. [99] introduce security specifications
for ECU behavior and communications and presented some
example specifications. Müter et al. [100] introduce a batch
of sensors of different types for anomaly detection to detect
the characteristics of in-vehicle networks, such as frequencies
and load. As most normal CAN packets arriving at a fixed
frequency, Taylor et al. [101] propose an inter-packet timing
measurement algorithm over a sliding window. The following
SVM can detect anomalies with satisfying results. Moreover,
some works utilize the inimitable physical characteristics of
the message, including voltage and signal, to achieve authen-
tication and detect malicious ECU [102], [103], [103].

V. FUTURE DIRECTIONS

Fully automated driving, which can operate on any road at
any time with no human interaction [104], has been viewed
as the holy grail of autonomous vehicles that would vastly
revolutionize the industry of automotive and bring engaging
transporting experience in our daily life. Recently, the success
of self-driving systems based on deep learning algorithms
has, for the first time, shed light on a practical and very
promising direction for achieving such an ultimate goal. In
general, such a system consists of a trained machine learning
model and many advanced sensors. The trained model serves
as the brain for the vehicle to “see, hear, and make reasonable
driving decisions” all on its own. Though it is intriguing
and convenient to delegate all of the control rights to the
vehicle itself, fatal incidents could also occur if the self-
driving system goes wrong. In addition, updating the self-
driving system requires new incoming training data from
the vehicle, which potentially leaks information of the daily
routine as well as other private information. This section first

summarizes and discusses the new severe threats in future
generations of autonomous vehicles, i.e., fully automated self-
driving vehicles. Then, it provides possible defense strategies
to make fully automated self-driving vehicles safer.

A. New Security Threats

We now introduce the new security threats in fully auto-
mated self-driving vehicles.

1) Trained Model Errors: Self-driving vehicles rely on
a deep learning model based perception system to identify
objects and drive autonomously on their own. However, due
to algorithm bugs or model errors, the perception system in a
self-driving vehicle may misclassify objects and lead to fatal
car incidents [105]. One recent example is the Uber self-
driving vehicle incident [105], [106] a self-driving vehicle
misclassified a pedestrian as other objects and failed to break
in time to prevent the collision. Therefore, the first new threat
in fully automated self-driving vehicles would be the errors in
the implemented in the trained deep learning model. In such a
safety-critical system, it is crucial to make sure that the trained
model for object identification and classification is robust and
bug-free.

2) Adversarial Examples: Besides the errors in the trained
deep learning models, misclassification can also be triggered
by specially crafted adversarial inputs. This new threat is
much more serious than inherent model bugs/errors, because
an outside attacker can trick the self-driving vehicle to ac-
tively deviate from the correct actions by inputting adver-
sarial (image) examples [71], [107], [108]. For example, as
demonstrated in a recent work [109], an attacker can deceive
a self-driving vehicle by deliberately generating toxic signs
alongside the road, causing the trained deep learning model
to misclassify signs and drive recklessly. Consequentially,
such a severe threat from adversarial examples, if not care-
fully addressed, would lead to potentially life-threatening
consequences. Moreover, adversarial examples under black-
box attack models [110] where no parameter information of
the target deep learning model is required, pose even severer
threats to self-driving vehicles. On that account, an attacker
could train an adversarial network [111] to generate more
advanced adversarial examples for attacking, which makes the
defense for adversarial examples more challenging.

3) Model Training Privacy: Training an accurate deep
learning model for self-driving vehicles requires a very large
dataset of road images or real driving videos as learning inputs.
Thus, continuously contributing learning inputs collected from
self-driving vehicles is essential to make the deep learning
model robust and accurate in real deployments. However, most
current model training infrastructures are centrally structured,
which means that the input data from self-driving vehicles
are transferred to a centralized server transparently. Since the
contributed learning dataset is closely related to daily lives,
it might reveal sensitive information of people, e.g., routine,
locations, etc [112]. Besides, according to a recent study [113],
the trained deep learning models can also leak sensitive
information of the data contributors. More specifically, an
attacker can leverage the models memorization of unique
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or rare sequences in the learning inputs, and extract useful
information from the trained models. Therefore, how to collect
data for model training while preventing privacy leakage needs
a thorough study before deploying self-driving vehicles in the
real world.

4) Model Execution Threats: In the implementation of
fully automated self-driving systems, many new designs of
hardware like TPU (Tensor Processing Unit), GPU, ASIC
(Application-specific Integrated Circuit) and FPGA (Field
Programmable Gate Array), are incorporated inside the au-
tonomous vehicles [114] for achieving lightweight and effi-
cient deep learning. Existing systems construct a new cen-
tral operating component inside the self-driving vehicle for
controlling the hardware to work seamlessly without mutual
intervention. However, similar to in-vehicle systems, such
a central operating component might subject to malicious
attacks, e.g., malware injections, and thus can hardly guarantee
the correctness of model executions. Therefore, such an oper-
ating system should be modeled as an untrusted environment
whose attack surface may be easily leveraged by the attackers,
and advanced defense mechanisms should be deployed for
ensuring execution integrity in self-driving vehicles.

B. Defense Strategies

We briefly discuss the strategies for defending against the
aforementioned security threats in fully automated self-driving
vehicles.

1) DNN Robustness Improvement: In order to improve the
robustness and reduce errors of deep learning models, we
could conduct comprehensive testing on those trained models.
Existing testing of trained models for self-driving vehicles
is mostly based on either 1) measuring and analyzing the
recognition error over a newly-inputted learning dataset, or 2)
running real driving tests on the road and giving attention to
disengagements, i.e., the incidents where the self-driving vehi-
cle cannot decide [105]. In the future, the testing procedures of
deep learning models could be more automatic. When an error
is detected, the system can automatically retrain the model
for improving accuracy. Also, the testing can be extended to
real-time, so that errors can be continuously monitored during
model execution, and automatically patched to further enhance
driving safety.

2) Adversarial Example Defense: To address adversarial
examples that can trick the deep learning model into behaving
what the attacker wants, the first possible defense strategy is to
pre-process or filter of input data so as to detect and eliminate
the adversarial examples before executing. For example, we
can use standard blurring techniques, e.g., Gaussian blur [115],
to let our trained model “escape” from adversarial examples.
Another useful defense strategy is to generate adversarial
examples or detect potential adversarial examples using data
mining methods, and then re-train the model with these
generated adversarial examples to make the deep learning
model more robust. Lastly, we can also try to enhance the
interpretability of underlying deep learning models. Using
the poison traffic sign adversarial example as an example,
we can let the self-driving vehicle give the reasoning of the

made decisions, by explaining what it “sees” in the input
image [116]. In this way, we can closely monitor the model
execution procedures and detect incorrect driving decisions in
time to prevent fatal accidents.

3) Data Privacy Preservation: To provide privacy of the
contributed training data, one possible strategy is to leverage
the emerging federated learning architecture [117] to train and
update the deep learning model. With this privacy-enhanced
architecture, the sensitive inputs for model training never leave
the self-driving vehicles, and only model parameter updates
are sent to the server for model converging and updating. As
a result, the private training data from all self-driving vehicles
can be protected during the model training and updating
process.

Specific configurations could be set to minimize memo-
rization during training to prevent data leakage. In particular,
one potential strategy for defending against memorization is
by adding the chosen noise carefully to each gradient update
during learning, so as to make the trained models differentially
private [118]–[120]. In this way, we can effectively hide the
occurrence of some private information in the trained models,
and can thus prevent an attacker from extracting them by
abusing model memorization.

4) Execution Integrity Enhancement: To enhance the exe-
cution integrity inside the self-driving vehicle, we can leverage
Trusted Execution Enclave (TEE) [121] to construct a secure
and isolated environment for executing integrity-critical driv-
ing decisions and learning. Currently, available TEE construc-
tions are implemented in CPUs manufactured by Intel [122]
and AMD [123]. In the near future, we can further design
enclaves for new hardware, from GPUs to ASIC circuits, so
that both performance and execution integrity are guaranteed
at the same time in a self-driving vehicle.

VI. CONCLUSION

In this article, we have conducted a comprehensive and
systematic survey on the security threats, defenses, and future
directions of autonomous vehicles. First, we have targeted
three types of potential attacks against the existing autonomous
vehicles, focusing on security threats of sensors, in-vehicle
systems, and in-vehicle protocols, respectively, and gave cor-
responding defense strategies. Second, we have further dived
into the future of autonomous vehicles, i.e., self-driving vehi-
cles based on deep learning algorithms, and elaborated the new
security threats therein. Specifically, we have focused on the
security threats of the deep learning model, including system
errors, adversarial examples, model privacy, and hardware
security. We have also presented potential practical defense
strategies for all the mentioned new threats, aiming to provide
a useful security guideline to boost the development of fully
automated self-driving vehicles.
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