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Abstract

Machine learning models have achieved 
state-of-the-art performance in various fields, 
from image classification to speech recognition. 
However, such models are trained with a large 
amount of sensitive training data, and are typ-
ically computationally expensive to build. As a 
result, many cloud providers (e.g., Google) have 
launched machine-learning-as-a-service, which 
helps clients benefit from the sophisticated cloud-
based machine learning models via accessing 
public APIs. Such a business paradigm signifi-
cantly expedites and simplifies the development 
circles. Unfortunately, the commercial value of 
such cloud-based machine learning models moti-
vates attackers to conduct model extraction 
attacks for free use or as a springboard to con-
duct other attacks (e.g., craft adversarial examples 
in black-box settings). In this article, we conduct 
a thorough investigation of existing approach-
es to model extraction attacks and defenses on 
cloud-based models. We classify the state-of-the-
art attack schemes into two categories based on 
whether the attacker aims to steal the property 
(i.e., parameters, hyperparameters, and architec-
ture) or the functionality of the model. We also 
categorize defending schemes into two groups 
based on whether the scheme relies on output 
disturbance or query observation. We not only 
present a detailed survey of each method, but 
also demonstrate the comparison of both attack 
and defense approaches via experiments. We 
highlight several future directions in both model 
extraction attacks and its defenses, which shed 
light on possible avenues for further studies.  

Introduction
Machine learning models have been widely used 
in many areas including speech recognition, 
natural language processing (NLP), image rec-
ognition, and so forth. These models are trained 
with enormous data and massive parameters to 
attain a high prediction power, which is compu-
tationally prohibitive for users with limited time 
and resources. To cater to such business oppor-
tunities, machine-learning-as-a-service (MLaaS) 
has been launched by cloud service providers 
(e.g., Amazon, Google), which host sophisticated 
machine learning models remotely on the cloud 
and charge clients for accessing models via pre-
diction application programming interfaces (APIs) 
on a pay-per-query basis, as shown in Fig. 1. Since 

developing these models consumes time, money, 
and human effort, cloud service providers keep 
the details of such cloud-based models (e.g., data-
sets, model architecture, model hyperparameters) 
confidential. For ordinary clients, these APIs are 
black-box, which take queries as inputs and return 
the prediction results without revealing internal 
operations. For various commercial and other 
motivations (e.g., implementing black-box adver-
sarial examples [1]), extracting such cloud-based 
models is attractive. 

However, conducting model extraction attacks 
is not trivial, especially for stealing complicat-
ed deep neural networks (DNNs) with massive 
parameters and hyperparameters. With the rapid 
development of neural network studies, the pos-
sible architectures of DNNs expand dramatically 
and become increasingly complex, making model 
extraction attacks more challenging. 

Nowadays, model extraction attacks have 
been extensively studied from various aspects, 
including parameter stealing [2], hyperparame-
ter stealing [3], architecture extraction [4], deci-
sion boundary inference [1, 5], and functionality 
stealing [6, 7]. State-of-the-art attacks have been 
proved to be effective against modern commer-
cial MLaaS services, including BigML [2], Amazon 
[1–3], Microsoft [3], Google [1], and MetaMind 
[1]. At the same time, in order to reduce the 
losses caused by model extraction attacks, many 
defense strategies have been proposed to detect 
or prevent such attacks. 

In this article, to the best of our knowledge, we 
are the first to present a comprehensive review of 
model extraction attacks and defenses for cloud-
based MLaaS services and put forward a classifi-
cation of existing state-of-the-art approaches. We 
not only summarize the current progress on model 
extraction attacks and defenses, but also compare 
their advantages and disadvantages from vari-
ous aspects. We conduct experiments to provide 
detailed evaluations of representative attack and 
defense approaches. We highlight several future 
research directions in advancing the effectiveness of 
existing attack and defense schemes.

Preliminaries

Machine Learning as a Service

Many cloud providers, including IBM, Ama-
zon, and Microsoft, have materialized the 
business model of MLaaS, which helps 
resource-constrained users enjoy the benefit of 
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machine learning. Ready-made, generic machine 
learning tools (e.g., predictive analytics, APIs, data 
visualization, and natural language processing) 
are provided by MLaaS for use and adaptation 
by small and medium-size companies. Users pay 
the cloud providers on a pay-per-query basis; for 
example, typical image classification service costs 
around $1~$10 per 1000 queries, depending 
on the specialty and complexity of the machine 
learning model. 

MLaaS services are diversified across different 
providers. We give a comprehensive comparison 
of the major commercial MLaaS providers in Table 
1. White-box MLaaS enables clients to download 
and implement machine learning models local-
ly, while black-box MLaaS only allows clients to 
access cloud-based models via a prediction query 
interface. Except for PredictionIO, all listed MLaaS 
services provide both the predicted label and the 
confidence score, which can boost the model 
stealing process. Some MLaas platforms allow cli-
ents to upload their own models and charge other 
clients for using their models (monetization).

There are various kinds of machine learning 
models adopted by MLaaS, including logistic 
regression, support vector machine, and DNN. 
An ML model can be described as a function f 
that takes a d-dimensional vector as the input and 
outputs the corresponding predicted label. The 
training of the ML model can be formulated as an 
optimization problem to minimize the loss func-
tion that measures the difference between the 
ground-truth label and the predicted label over 
all training data samples. To avoid overfitting, a 
regularization function is usually added to the loss 
function.

Problem Description

We consider an adversary who aims to conduct 
model extraction attack on a cloud-based model 
which is protected by the cloud service provid-
er. In this part, we outline both the attack and 
defense goals. Each attack or defense methodol-
ogy mentioned later is designed according to the 
relevant goals.

Attack Objective: The attacker’s goal is to 
learn the private attribute information (e.g., struc-
ture, parameters) of the cloud-based model or 
establish a substitute model with similar function-
alities to the cloud-based model. If the attacker 

has access to the training dataset of the cloud-
based models, a substitute model can easily be 
trained with this training dataset. However, in the 
real-world MLaaS scenario, the adversary knows 
nothing about the training data or the test data 
used to train and evaluate the model. Further-
more, the adversary has no access to the inter-
nals of the cloud-based models, including model 
parameters, hyperparameters, and model archi-
tecture. The attacker can only access the API pro-
vided by the MLaaS provider, with inputs in and 
prediction results out.

Defense Objective: The defender’s goal is to 
prevent the attacker from stealing private infor-
mation or replicating the cloud-based model’s 
functionality. Specifically, given a certain budget 
of the attacker, the defender aims to reduce the 
accuracy of the stolen model established by the 
attacker. The defender also needs to ensure high 
classification accuracy to the benign clients to 
retain the utility of the cloud-based model for the 
prediction tasks. The defender tries to increase 
the cost of stealing the model to reach a certain 
accuracy target, thus the attacker is discouraged 
from performing the attack.

State-of-the-Art  
Model Extraction Attacks

In this section, we present a thorough investiga-
tion of existing approaches to model extraction 
attacks on cloud-based models and give a com-
prehensive comparison of them.

Attack Approaches

According to the purpose of the attacker, we 
classify state-of-the-art attack schemes into two 
categories: model attribute extraction and model 

The training of the ML 

model can be formulat-

ed as an optimization 

problem to minimize 

the loss function that 

measures the difference 

between the ground-

truth label and the 

predicted label over all 

training data samples. 

To avoid overfitting, a 

regularisation function 

is usually added to the 

loss function.

Figure 1. An overview of model extraction attack against an MLaaS provider. The left part denotes how the 
cloud-based models are developed in the MLaaS provider, and the right part demonstrates the flow of 
the model extraction attack.

Table 1. Comparison of major commercial MLaaS 
providers.

Provider Availability
Confidence 

score
Monetization

Google
Amazon
BigML

Microsoft
PredictionIO

Black-box
Black-box
 White-box
Black-box
 White-box

Available 
Available
Available
Available

Not available

YES
NO
YES
NO
NO
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functionality extraction.
Model Attribute Extraction: Most existing 

extraction attacks focus on attribute stealing, 
including parameters [2], hyperparameters [3], 
architecture [4], and decision boundary [5], which 
are tightly related to the intellectual property 
rights of the cloud-based models.

Tramer et al. proposed StealML [2], which 
requires knowledge of both prediction labels and 
confidence scores, and works with various pop-
ular cloud-based models such as logistic regres-
sion, support vector machine (SVM), decision 
tree, and shallow neural networks. In StealML, the 
attacker uses a set of crafted or publicly available 
data samples to query the cloud-based model, 
and then uses the input-output pairs to construct 
a series of equations of parameters. By solving 
these equations, the adversary can infer the 
internal parameters of the targeted model. This 
scheme is conceptually simple, but the attack-
er needs to know the family of the cloud-based 
model. Moreover, StealML only applies to simple 
models with a small amount of parameters and is 
ineffective for DNN models.

Apart from parameters, hyperparameters of 
the cloud-based ML models are also of significant 
commercial value. Wang et al. proposed Steal-
Hyperparameter [3] based on the observation 
that model parameters are decided to minimize 
the objective function, and the corresponding 
gradient of the objective function is close to 0. 
Hence, the adversary can calculate the gradi-
ent of the objective function at the value of the 
model parameters and make the objective func-
tion equal 0 to obtain a system of linear equations 
about hyperparameters. The linear least square 
method [8] is utilized to solve the overdetermined 
problem in linear systems (the number of equa-
tions is larger than the number of unknown vari-
ables). 

To infer the architecture of the cloud-based 
DNN model, Duddu et al. proposed StealNN [4] 
using the techniques of timing side channels. It is 
based on the assumption that the total execution 
time of the neural network depends on the depth 
of the network. The adversary needs to know the 
hardware on which the victim model is running, 
and use the same hardware to build timing pro-
files of different neural networks. Specifically, the 
attacker uses iterative membership inference [9] 
to reconstruct the training dataset, which is used 
to query the cloud-based model to calculate the 
total execution time. Then a regressor is trained to 
quantify the relationship between execution times 
and the neural network depth. Finally, the attacker 

can infer the depth (the number of layers) of the 
DNN using the pre-trained regressor and the total 
execution time.

Recently, Juuti et al. presented an iterative 
model extraction strategy named PRADA that 
includes many duplication rounds [5]. Each round 
consists of three phases: querying the cloud-
based model, training the substitute model on the 
obtained labels, and crafting new synthetic sam-
ples based on Jacobian-Based Data Augmentation 
(JBDA) using the updated substitute model. Dif-
ferent from other extraction methods, PRADA is 
evaluated by an extra metric, the transferability of 
the adversarial samples, which concerns extract-
ing the decision boundary of the targeted black-
box model.

Model Functionality Extraction: Apart from 
attribute extraction, another attack goal is to con-
struct a substitute model that has similar perfor-
mance to the targeted cloud-based model for the 
same tasks (i.e., functionality attacks).

Shi et al. proposed StealClassifier [6] to extract 
the functionality of both Naive Bayes and SVM 
classifiers for text classification. It is shown that 
it is possible to extract the functionality of simple 
models using more complicated models (using 
DNN to extract the functionality of SVM), but the 
reverse is impractical (using SVM or Naive Bayes 
models to extract the functionality of DNNs).

To steal the functionality of more sophisticated 
architectures (i.e., DNN models), KnockoffNets 
[7] is proposed. The overall process includes three 
phases: substitute model architecture selection, 
query dataset construction, and substitute model 
training. Since the architecture of the cloud-based 
model is unknown to the attacker, selecting an 
appropriate architecture is nontrivial. Fortunately, 
it is proved that a duly complicated architecture 
is able to reproduce the functionality of common 
DNN models well [1, 7], and the substitute model 
and the victim model may not even be in the 
same family; for example, VGG-16 may be used 
to extract ResNet-10. For query dataset construc-
tion, the adversary usually chooses a huge bench-
mark dataset (e.g., ILSVRC, OpenImages) as the 
query dataset. To query more efficiently, reinforce-
ment learning strategies are leveraged to select 
the best query samples. Once the attacker gets 
the prediction results (e.g., label and confidence 
scores) from the cloud-based model, he/she can 
use the selected architecture to train these que-
ry-output pairs to obtain a knockoff model. 

Comprehensive Comparison of Attacks

For model extraction attacks, we give a com-

Table 2. Comparison of state-of-the-art model extraction attacks.

Method Attack type Extract DNNs
Need confidence 

information
Works with a limited 

query budget

StealML [2] Model attribute extraction NO YES YES

StealHyperparameters [3] Model attribute extraction YES YES YES

StealNN [4] Model attribute extraction YES NO NO

PRADA [5] Model attribute extraction YES NO YES

KnockoffNets [7] Model functionality extraction YES NO YES

StealClassifier [6] Model functionality extraction NO NO YES
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prehensive comparison in Table 2 from various 
aspects. 
•	 Extract DNNs. The ability to steal the cloud-

based DNN models is significant for the 
attacker because DNN models are increas-
ingly used in MLaaS for their excellent 
performance. We can see that except for 
StealML [2] and StealClassifier [6], all other 
approaches are capable of extracting DNNs. 
To recap, StealML [2] only works on SVMs, 
LR, decision trees, and shallow neural net-
works, while StealClassifier [6] works only on 
SVM and Naive Bayes.

•	 Confidence score information. After que-
rying the cloud-based model, the attacker 
will receive the returned prediction results 
(e.g., label, confidence scores). The confi-
dence scores provide extra information to 
the attacker but are not available in certain 
MLaaS APIs (e.g., PredictionIO). Approach-
es that only require prediction labels are 
more practical but are more challenging 
to implement. With the advancement in 
model extraction studies, we can see that 
more strategies have considered such a con-
strained situation [4–7].

•	 Query budget. To attain a performance target 
of the stolen model, there should be enough 
queries to collect information about the 
cloud-based model. The cost of querying the 
MLaaS APIs cannot be neglected since every 
query is billed on a pay-per-query basis. If 
the cost of model stealing is higher than that 
of model training (including training data 
collection), there is no motivation for the 
attacker to steal models. Most state-of-the-art 
strategies can meet a realistic query budget. 
In comparison, StealNN [4] needs more que-
ries than others. 

State-of-the-Art Defense Approaches

Defense Approaches

In this section, we introduce two categories of 
state-of-the-art countermeasures against model 
extraction attacks: defending by output perturba-
tion (i.e., injecting special perturbations to model 
predictions) and detecting by observing the que-
ries (i.e., monitoring the user-server streams and 
generating a warning if malicious behaviors are 
detected). Furthermore, we give a comprehensive 
comparison of these defense approaches.

Defense by Output Perturbation: Since the 
attackers need certain information (e.g., predic-
tion labels and confidence scores) to steal the vic-
tim model, the cloud service provider can defend 
their models by reducing or obfuscating the infor-
mation provided by APIs. 

Lee et al. proposed Deceptive Perturbations 
[10], which perturb the softmax activation func-
tion that produces the confidence scores such 
that the parameters are hidden from the attack-
er. Specifically, original responses are altered 
by adding perturbations using Reverse Sigmoid 
[10] with a sum-to-one normalizer. However, the 
top-1 labels are not tampered with; thus, some 
extraction attacks that work only with prediction 
labels are still effective [5, 7].

To address this problem, Orekondy et al. pro-
posed Prediction Poisoning [11], a utility-con-

strained defense framework that satisfies both 
privacy and utility objectives via perturbing the 
predictions. The perturbations maximize the angu-
lar deviation between the gradient of the poi-
soned posteriors and that of the original model. A 
tunable parameter is used to balance the security 
and the prediction accuracy. However, this meth-
od requires a lot of gradient calculations, which 
results in high computational costs and increases 
inference delays by several orders of magnitude.

BDPL uses differential privacy to perturb the 
output [12]. A boundary differential privacy layer 
is added to obfuscate the responses of queries 
around the decision boundary. Specifically, BDPL 
identifies whether a query is sensitive by checking 
the corner points with a given radius to the query 
on all dimensions. If there is a flipping point with-
in the ball centered at the query with the given 
radius, the current query is identified as sensitive. 
Then the defender will return obfuscated respons-
es using the boundary randomized response algo-
rithm controlled by the privacy budget. 

The perturbation strategy is an active defense 
strategy, which does not differentiate potential 
attackers from benign clients. Therefore, the utility 
of the cloud-based models may be affected due 
to perturbations. 

Detection by Observing Queries: Apart from 
reducing the information returned to the attack-
er, the cloud service provider may detect poten-
tial attacks by observing queries from the clients. 
Such a passive defense strategy will not impair the 
utility of cloud-based models. 

Kesarwani et al. proposed Extraction Warning 
[13] to discover potential extraction attacks and 
issue extraction status warnings. The model owner 
needs to set an extraction threshold, and an alarm 
will be issued whenever the extraction threshold 
is hit. To measure the knowledge gained by the 
adversary, two methods are designed. The first 
approach measures the total information gain 
by training and updating a local proxy model 
for each client to estimate the information gain 
concerning a given validation set, which is com-
putationally expensive. The second method is to 
maintain compact query summaries [13] for each 
client and computes the feature space covered by 
the client’s queries.

Forgotten Siblings [14] applies closeness-to-the-
boundary (a concept from digital watermarking) 
to reveal extraction attacks against decision trees. 
Since adversaries usually use the queries around 

Figure 2. Defense strategy using the closeness-to-the-boundary concept.
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the decision boundary, the defender can identify 
malicious queries by tracking the closeness of the 
user’s queries to the class boundary. Forgotten 
Siblings defines the security margins alongside the 
decision tree boundary using the statistical dis-
tribution of the training data, as shown in Fig. 2. 
Every submitted query is determined to be within 
the margin or not. Subsequently, the average ratio 
between the queries inside and outside the mar-
gin for all leaves is calculated. If the query ratio 
exceeds the threshold, the current query will be 
identified as a malicious query (red square).

However, the above two schemes only work 
on the cloud-based models with linearly separated 
prediction classes (e.g., decision trees) but do not 
work for complicated models like DNNs. In addi-
tion, false alarms may be raised as a benign client 
may also explore vast areas of the input spaces.

PRADA [5] was proposed to detect attacks 
against any cloud-based ML models. It is based 
on the assumption that the distances between 
queries used by the attacker are usually artificially 
controlled, and thus will deviate from a normal 
(Gaussian) distribution. Given a detection thresh-
old, a domain-specific distance metric is used 
to compute distances between queries. PRADA 
keeps track of the minimum distance between a 
new input sample and all previous samples in the 
same class to model the distribution of queries. 
The Shapiro-Wilk test statistic is used to quanti-
fy if the distribution of the current queries fits a 
normal distribution. An attack is considered to 
occur if the Shapiro-Wilk test statistic is below the 
threshold. However, PRADA may not work if the 
adversary adds dummy queries to fit a normal dis-
tribution.

Comprehensive Comparison of Defenses

A comparison of the defense approaches is given 
in Table 3.
•	 Defense effectiveness. The defense effective-

ness describes whether a defending meth-
od is useful when defending against model 
extraction attacks. There are no unified met-
rics to measure the defense effectiveness 
of all approaches for several reasons. The 
source codes of most defending approaches 
are not open. Different defending schemes 
focus on different metrics, such as accu-
racy drop in Deceptive Perturbations [10] 

and Prediction Poisoning [11], extraction 
rate drop in BDPL [12], FPR in PRADA [5], 
fraction of successfully extracted leaves p in 
Forgotten Siblings [14]. Moreover, different 
detection defense strategies target different 
models; for example, DNN in PRADA [5], 
Deceptive Perturbations [10], Prediction Poi-
soning [11], and BDPL [12], and decision 
trees in Extraction Warning [13] and Forgot-
ten Siblings [14].

•	 Apply for DNN. Since most of the current 
cloud-based models are DNNs, developing 
strategies to resist DNN model extraction 
attacks is increasingly essential for cloud ser-
vice providers. Except for Extraction Warning 
[13] and Forgotten Siblings [14], which are 
designed for decision trees, we can see that 
most defense approaches can apply to com-
plex DNN models.

•	 Colluding attacker defense. Defending 
against collusion attacks is critical for cloud 
service providers. An attacker may distribute 
his/her carefully crafted queries to colluding 
partners so that the statistics of queries of 
each malicious client is below the alarming 
threshold. Therefore, the attacker can evade 
the defending strategy. In Table 3, we can 
see that only Extraction Warning [13] among 
all the defense works has considered this 
issue. 

Performance Evaluation
To evaluate the performance of different model 
extraction attacks, we conduct experiments on 
StealML [2], PRADA [5], and KnockoffNets [7] 
in terms of attack effectiveness. We use two 
evaluation metrics: absolute accuracy and rela-
tive accuracy. Absolute accuracy is the prediction 
accuracy of the extracted substitute model. Rela-
tive accuracy is the relative prediction accuracy of 
the extracted model compared to the prediction 
accuracy of the cloud-based model. Following 
[1, 5], we have established a black-box model on 
the MNIST dataset (2828) with LeNet structure 
(two convolution layers with pooling and two fully 
connected layers), and its accuracy is 99.47 per-
cent. The learning rates of StealML [2], PRADA 
[5], and KnockoffNets [7] are all set as 0.01. We 
set the batch size of StealML [2] as 20, PRADA 
[5] as 50, and KnockoffNets [7] as 8. In the exper-

Table 3. Comparison of state-of-the-art model extraction defenses.

Method Defense type Defense effectiveness Apply for DNN Defend colluding attackers

Deceptive Perturbations [10] Output perturbation Accuracy drop1 more than 20% YES NO

Prediction Poisoning [11] Output perturbation Accuracy drop more than 20% YES NO

BDPL [12] Output perturbation Extraction rate2 drop up to 12% YES NO

PRADA [5] Query observation Nearly 0.0% FPR3 YES NO

Extraction Warning [13] Query observation Most extraction rates exceed threshold4 NO YES

Forgotten Siblings [14] Query observation nearly 0.11 p5 NO NO

1 Accuracy drop measures the accuracy decrease of the substitute model before and after applying the defense strategy.
2 Extraction rate measures the proportion of matching predictions: given the same input, the substitute model and the cloud-based model have the same output.
3 FPR evaluates the ratio of false alarms to all query sequences.
4 Extraction rate measures the knowledge learned by clients. A warning is issued if the extraction rate exceeds a predestined threshold.
5 The metric p denotes the fraction of successfully extracted leaves, which is used to determine the knowledge gain by the attacker. (The lower the value, the more effective the 
defense. p = 1 denotes 100% attack success rate.)
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iments, the total number of queries to the cloud 
APIs is 10,000. StealML [2] and PRADA [5] use 
the crafted query samples, and KnockoffNets [7] 
uses the EMNIST Letters as the query dataset. All 
experiments are carried out on a machine with 
an Intel Core CPU with 6-core operating at 3.70 
GHz and equipped with 64 GB RAM, running a 
Linux 4.15.0 operating system. 

The evaluation results are shown in Fig. 3. We 
can see that both KnockoffNets [7] and PRADA 
[5] achieve a higher relative accuracy than 
StealML [2]. The possible reason is that StealML 
[2] only works on shallow neural networks (i.e., 
with only one hidden layer), while LeNet-5 struc-
ture is used in the experiments. Furthermore, 
since KnockoffNets [7] uses EMNIST as the query 
samples, which consists of handwritten character 
digits, it performs slightly better than PRADA [5].

As mentioned above, we cannot compare all 
the defenses’ work in a fair way due to the lack 
of source codes and unified metrics. Therefore, 
we make analyses in a qualitative way according 
to their original contexts and conduct part of the 
experiments. We present the comparison results 
in the third column of Table 3. We conduct the 
experiments on PRADA [5] and Forgotten Sib-
lings [14] with their open source codes. Following 
the same settings of [5], we protect the MNIST 
LeNet-5 model from StealML [2] attacks and set 
the threshold as 0.90. The experiment results 
have demonstrated the effectiveness of PRADA 
that produced nearly 0.0 percent (FPR false pos-
itive rate). Similarly, following [14], we protect a 
pre-trained model (trained with the Wine Quali-
ty dataset) from StealML [2] attacks, and set the 
threshold as 0.3. The experiments have shown 
that the fraction of successfully extracted leaves 
p is only 0.11, which confirms the effectiveness of 
the defense strategy.

Future Research Directions

Potential Research Directions on Attacks

From the perspective of attacks, there are three 
aspects worth further exploring.

First, most of the existing model extraction 
attacks focus on attribute extraction, and existing 
functionality extraction strategies are not ideal. 
KnockoffNets [7] is effective to steal simple DNN 
architectures, but also requires access to large 
amounts of related public datasets that serve as 
the transfer dataset to construct substitute models 
that are highly similar to the original cloud-based 
models. Therefore, how to design a functionality 
extraction algorithm that depends less on pub-
lic datasets but can still achieve high accuracy of 
the substitute model needs to be studied in the 
future. 

Second, the attacks are significantly less effec-
tive with less information; for example, the accu-
racy of the substitute model will drop rapidly as 
there are fewer returned top-k labels (a smaller k) 
in KnockoffNets attacks [7]. This problem is espe-
cially severe for complex DNNs. How to main-
tain/increase the capability of model extraction 
attacks when cloud APIs only return the label with 
the highest confidence score is a problem worth 
studying. 

Finally, existing model extraction approaches 
mainly work on stealing DNN models with rela-

tively simple structures [3, 5, 6]. When stealing 
real-world APIs with millions of parameters, such 
approaches may not achieve satisfying results. 
How to design an effective attacking strategy in 
terms of stealing sophisticated cloud-based DNNs 
is a possible future research direction.

Potential Research Directions on Defenses

From the perspective of defenses, we highlight 
four aspects. 

First, the adversary may evade the detection 
using some special techniques. For instance, the 
adversary can make dummy queries, which are 
not used to build the substitute model but can 
mimic the query distribution of benign clients [5], 
or use samples with lower information gains and 
limited coverage of feature space [13]. How to 
effectively detect model extraction attacks fac-
ing these more intelligent attacks needs further 
research.

Second, state-of-the-art defending approach-
es based on perturbing prediction results usually 
sacrifice the utility to achieve the security target 
[11]. As the perturbation increases, the model 
prediction accuracy deteriorates, and the security 
level increases. However, even a slight decrease 
in performance may make commercial cloud-
based models lose competitive advantage. How 
to effectively protect cloud-based models while 
maintaining its utility should also be considered.

Third, when considering attacks under federat-
ed learning or the blockchain scenario, we think 
the cloud provider can employ the differential pri-
vacy technique and encrypt the trained model 
aiming to prevent the attackers from extracting 
the model or inferring original training data via 
reverse engineering. 

Last but not least, recent studies have shown 
that the strategies of side-channel attacks can be 
applied to model extraction attacks (e.g., timing 
side-channel [4] and electromagnetic side-chan-
nel [15]). Both can achieve a high attack success 
rate. However, there are no defending strategies 
designed for these kinds of model extraction 
attacks. It should be an important direction for 

Figure 3. Performance comparison of state-of-the-art model extraction attacks.
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future investigation.

Conclusion
Model extraction attacks on cloud-based MLaaS 
services pose serious security issues. In this article, 
we provide a comprehensive summary of existing 
methods of model extraction attacks and possi-
ble defenses. We review the latest research find-
ings, compare advantages and disadvantages of 
different approaches, and conduct experimental 
evaluations of representative attack and defense 
methods. Finally, we highlight potential directions 
that are worth exploring to further propel the 
research in this field.
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