
IEEE Communications Magazine • December 20202 0163-6804/20/$25.00 © 2020 IEEE

Abstract

Machine learning models have achieved
state-of-the-art performance in various fields,
from image classification to speech recognition.
However, such models are trained with a large
amount of sensitive training data, and are typ-
ically computationally expensive to build. As a
result, many cloud providers (e.g., Google) have
launched machine-learning-as-a-service, which
helps clients benefit from the sophisticated cloud-
based machine learning models via accessing
public APIs. Such a business paradigm signifi-
cantly expedites and simplifies the development
circles. Unfortunately, the commercial value of
such cloud-based machine learning models moti-
vates attackers to conduct model extraction
attacks for free use or as a springboard to con-
duct other attacks (e.g., craft adversarial examples
in black-box settings). In this article, we conduct
a thorough investigation of existing approach-
es to model extraction attacks and defenses on
cloud-based models. We classify the state-of-the-
art attack schemes into two categories based on
whether the attacker aims to steal the property
(i.e., parameters, hyperparameters, and architec-
ture) or the functionality of the model. We also
categorize defending schemes into two groups
based on whether the scheme relies on output
disturbance or query observation. We not only
present a detailed survey of each method, but
also demonstrate the comparison of both attack
and defense approaches via experiments. We
highlight several future directions in both model
extraction attacks and its defenses, which shed
light on possible avenues for further studies.

Introduction
Machine learning models have been widely used
in many areas including speech recognition,
natural language processing (NLP), image rec-
ognition, and so forth. These models are trained
with enormous data and massive parameters to
attain a high prediction power, which is compu-
tationally prohibitive for users with limited time
and resources. To cater to such business oppor-
tunities, machine-learning-as-a-service (MLaaS)
has been launched by cloud service providers
(e.g., Amazon, Google), which host sophisticated
machine learning models remotely on the cloud
and charge clients for accessing models via pre-
diction application programming interfaces (APIs)
on a pay-per-query basis, as shown in Fig. 1. Since

developing these models consumes time, money,
and human effort, cloud service providers keep
the details of such cloud-based models (e.g., data-
sets, model architecture, model hyperparameters)
confidential. For ordinary clients, these APIs are
black-box, which take queries as inputs and return
the prediction results without revealing internal
operations. For various commercial and other
motivations (e.g., implementing black-box adver-
sarial examples [1]), extracting such cloud-based
models is attractive.

However, conducting model extraction attacks
is not trivial, especially for stealing complicat-
ed deep neural networks (DNNs) with massive
parameters and hyperparameters. With the rapid
development of neural network studies, the pos-
sible architectures of DNNs expand dramatically
and become increasingly complex, making model
extraction attacks more challenging.

Nowadays, model extraction attacks have
been extensively studied from various aspects,
including parameter stealing [2], hyperparame-
ter stealing [3], architecture extraction [4], deci-
sion boundary inference [1, 5], and functionality
stealing [6, 7]. State-of-the-art attacks have been
proved to be effective against modern commer-
cial MLaaS services, including BigML [2], Amazon
[1–3], Microsoft [3], Google [1], and MetaMind
[1]. At the same time, in order to reduce the
losses caused by model extraction attacks, many
defense strategies have been proposed to detect
or prevent such attacks.

In this article, to the best of our knowledge, we
are the first to present a comprehensive review of
model extraction attacks and defenses for cloud-
based MLaaS services and put forward a classifi-
cation of existing state-of-the-art approaches. We
not only summarize the current progress on model
extraction attacks and defenses, but also compare
their advantages and disadvantages from vari-
ous aspects. We conduct experiments to provide
detailed evaluations of representative attack and
defense approaches. We highlight several future
research directions in advancing the effectiveness of
existing attack and defense schemes.

Preliminaries

Machine Learning as a Service

Many cloud providers, including IBM, Ama-
zon, and Microsoft, have materialized the
business model of MLaaS, which helps
resource-constrained users enjoy the benefit of

Xueluan Gong, Yanjiao Chen, Qian Wang, Wang Yang, and Xinchang Jiang

ACCEPTED FROM OPEN CALL

The authors conduct an
investigation of existing
approaches to model
extraction attacks and
defenses on cloud-based
models. They classify
attack schemes into two
categories based on
whether the attacker aims
to steal the property or
the functionality of the
model. They also catego-
rize defending schemes
into two groups based on
whether the scheme relies
on output disturbance or
query observation.

Xueluan Gong, Yanjiao Chen, Qian Wang, Wang Yang, and Xinchang Jiang are with Wuhan University.
Digital Object Identifier:
10.1109/MCOM.001.2000196

Model Extraction Attacks and Defenses on
Cloud-Based Machine Learning Models

IEEE Communications Magazine • December 2020 3

machine learning. Ready-made, generic machine
learning tools (e.g., predictive analytics, APIs, data
visualization, and natural language processing)
are provided by MLaaS for use and adaptation
by small and medium-size companies. Users pay
the cloud providers on a pay-per-query basis; for
example, typical image classification service costs
around $1~$10 per 1000 queries, depending
on the specialty and complexity of the machine
learning model.

MLaaS services are diversified across different
providers. We give a comprehensive comparison
of the major commercial MLaaS providers in Table
1. White-box MLaaS enables clients to download
and implement machine learning models local-
ly, while black-box MLaaS only allows clients to
access cloud-based models via a prediction query
interface. Except for PredictionIO, all listed MLaaS
services provide both the predicted label and the
confidence score, which can boost the model
stealing process. Some MLaas platforms allow cli-
ents to upload their own models and charge other
clients for using their models (monetization).

There are various kinds of machine learning
models adopted by MLaaS, including logistic
regression, support vector machine, and DNN.
An ML model can be described as a function f
that takes a d-dimensional vector as the input and
outputs the corresponding predicted label. The
training of the ML model can be formulated as an
optimization problem to minimize the loss func-
tion that measures the difference between the
ground-truth label and the predicted label over
all training data samples. To avoid overfitting, a
regularization function is usually added to the loss
function.

Problem Description

We consider an adversary who aims to conduct
model extraction attack on a cloud-based model
which is protected by the cloud service provid-
er. In this part, we outline both the attack and
defense goals. Each attack or defense methodol-
ogy mentioned later is designed according to the
relevant goals.

Attack Objective: The attacker’s goal is to
learn the private attribute information (e.g., struc-
ture, parameters) of the cloud-based model or
establish a substitute model with similar function-
alities to the cloud-based model. If the attacker

has access to the training dataset of the cloud-
based models, a substitute model can easily be
trained with this training dataset. However, in the
real-world MLaaS scenario, the adversary knows
nothing about the training data or the test data
used to train and evaluate the model. Further-
more, the adversary has no access to the inter-
nals of the cloud-based models, including model
parameters, hyperparameters, and model archi-
tecture. The attacker can only access the API pro-
vided by the MLaaS provider, with inputs in and
prediction results out.

Defense Objective: The defender’s goal is to
prevent the attacker from stealing private infor-
mation or replicating the cloud-based model’s
functionality. Specifically, given a certain budget
of the attacker, the defender aims to reduce the
accuracy of the stolen model established by the
attacker. The defender also needs to ensure high
classification accuracy to the benign clients to
retain the utility of the cloud-based model for the
prediction tasks. The defender tries to increase
the cost of stealing the model to reach a certain
accuracy target, thus the attacker is discouraged
from performing the attack.

State-of-the-Art
Model Extraction Attacks

In this section, we present a thorough investiga-
tion of existing approaches to model extraction
attacks on cloud-based models and give a com-
prehensive comparison of them.

Attack Approaches

According to the purpose of the attacker, we
classify state-of-the-art attack schemes into two
categories: model attribute extraction and model

The training of the ML

model can be formulat-

ed as an optimization

problem to minimize

the loss function that

measures the difference

between the ground-

truth label and the

predicted label over all

training data samples.

To avoid overfitting, a

regularisation function

is usually added to the

loss function.

Figure 1. An overview of model extraction attack against an MLaaS provider. The left part denotes how the
cloud-based models are developed in the MLaaS provider, and the right part demonstrates the flow of
the model extraction attack.

Table 1. Comparison of major commercial MLaaS
providers.

Provider Availability
Confidence

score
Monetization

Google
Amazon
BigML

Microsoft
PredictionIO

Black-box
Black-box
 White-box
Black-box
 White-box

Available
Available
Available
Available

Not available

YES
NO
YES
NO
NO

IEEE Communications Magazine • December 20204

functionality extraction.
Model Attribute Extraction: Most existing

extraction attacks focus on attribute stealing,
including parameters [2], hyperparameters [3],
architecture [4], and decision boundary [5], which
are tightly related to the intellectual property
rights of the cloud-based models.

Tramer et al. proposed StealML [2], which
requires knowledge of both prediction labels and
confidence scores, and works with various pop-
ular cloud-based models such as logistic regres-
sion, support vector machine (SVM), decision
tree, and shallow neural networks. In StealML, the
attacker uses a set of crafted or publicly available
data samples to query the cloud-based model,
and then uses the input-output pairs to construct
a series of equations of parameters. By solving
these equations, the adversary can infer the
internal parameters of the targeted model. This
scheme is conceptually simple, but the attack-
er needs to know the family of the cloud-based
model. Moreover, StealML only applies to simple
models with a small amount of parameters and is
ineffective for DNN models.

Apart from parameters, hyperparameters of
the cloud-based ML models are also of significant
commercial value. Wang et al. proposed Steal-
Hyperparameter [3] based on the observation
that model parameters are decided to minimize
the objective function, and the corresponding
gradient of the objective function is close to 0.
Hence, the adversary can calculate the gradi-
ent of the objective function at the value of the
model parameters and make the objective func-
tion equal 0 to obtain a system of linear equations
about hyperparameters. The linear least square
method [8] is utilized to solve the overdetermined
problem in linear systems (the number of equa-
tions is larger than the number of unknown vari-
ables).

To infer the architecture of the cloud-based
DNN model, Duddu et al. proposed StealNN [4]
using the techniques of timing side channels. It is
based on the assumption that the total execution
time of the neural network depends on the depth
of the network. The adversary needs to know the
hardware on which the victim model is running,
and use the same hardware to build timing pro-
files of different neural networks. Specifically, the
attacker uses iterative membership inference [9]
to reconstruct the training dataset, which is used
to query the cloud-based model to calculate the
total execution time. Then a regressor is trained to
quantify the relationship between execution times
and the neural network depth. Finally, the attacker

can infer the depth (the number of layers) of the
DNN using the pre-trained regressor and the total
execution time.

Recently, Juuti et al. presented an iterative
model extraction strategy named PRADA that
includes many duplication rounds [5]. Each round
consists of three phases: querying the cloud-
based model, training the substitute model on the
obtained labels, and crafting new synthetic sam-
ples based on Jacobian-Based Data Augmentation
(JBDA) using the updated substitute model. Dif-
ferent from other extraction methods, PRADA is
evaluated by an extra metric, the transferability of
the adversarial samples, which concerns extract-
ing the decision boundary of the targeted black-
box model.

Model Functionality Extraction: Apart from
attribute extraction, another attack goal is to con-
struct a substitute model that has similar perfor-
mance to the targeted cloud-based model for the
same tasks (i.e., functionality attacks).

Shi et al. proposed StealClassifier [6] to extract
the functionality of both Naive Bayes and SVM
classifiers for text classification. It is shown that
it is possible to extract the functionality of simple
models using more complicated models (using
DNN to extract the functionality of SVM), but the
reverse is impractical (using SVM or Naive Bayes
models to extract the functionality of DNNs).

To steal the functionality of more sophisticated
architectures (i.e., DNN models), KnockoffNets
[7] is proposed. The overall process includes three
phases: substitute model architecture selection,
query dataset construction, and substitute model
training. Since the architecture of the cloud-based
model is unknown to the attacker, selecting an
appropriate architecture is nontrivial. Fortunately,
it is proved that a duly complicated architecture
is able to reproduce the functionality of common
DNN models well [1, 7], and the substitute model
and the victim model may not even be in the
same family; for example, VGG-16 may be used
to extract ResNet-10. For query dataset construc-
tion, the adversary usually chooses a huge bench-
mark dataset (e.g., ILSVRC, OpenImages) as the
query dataset. To query more efficiently, reinforce-
ment learning strategies are leveraged to select
the best query samples. Once the attacker gets
the prediction results (e.g., label and confidence
scores) from the cloud-based model, he/she can
use the selected architecture to train these que-
ry-output pairs to obtain a knockoff model.

Comprehensive Comparison of Attacks

For model extraction attacks, we give a com-

Table 2. Comparison of state-of-the-art model extraction attacks.

Method Attack type Extract DNNs
Need confidence

information
Works with a limited

query budget

StealML [2] Model attribute extraction NO YES YES

StealHyperparameters [3] Model attribute extraction YES YES YES

StealNN [4] Model attribute extraction YES NO NO

PRADA [5] Model attribute extraction YES NO YES

KnockoffNets [7] Model functionality extraction YES NO YES

StealClassifier [6] Model functionality extraction NO NO YES

The defender’s goal is

to prevent the attacker

from stealing private

information or repli-

cating the cloud-based

model’s functionality.

Specifically, given a

certain budget of the

attacker, the defender

aims to reduce the

accuracy of the stolen

model established by

the attacker.

IEEE Communications Magazine • December 2020 5

prehensive comparison in Table 2 from various
aspects.
•	 Extract DNNs. The ability to steal the cloud-

based DNN models is significant for the
attacker because DNN models are increas-
ingly used in MLaaS for their excellent
performance. We can see that except for
StealML [2] and StealClassifier [6], all other
approaches are capable of extracting DNNs.
To recap, StealML [2] only works on SVMs,
LR, decision trees, and shallow neural net-
works, while StealClassifier [6] works only on
SVM and Naive Bayes.

•	 Confidence score information. After que-
rying the cloud-based model, the attacker
will receive the returned prediction results
(e.g., label, confidence scores). The confi-
dence scores provide extra information to
the attacker but are not available in certain
MLaaS APIs (e.g., PredictionIO). Approach-
es that only require prediction labels are
more practical but are more challenging
to implement. With the advancement in
model extraction studies, we can see that
more strategies have considered such a con-
strained situation [4–7].

•	 Query budget. To attain a performance target
of the stolen model, there should be enough
queries to collect information about the
cloud-based model. The cost of querying the
MLaaS APIs cannot be neglected since every
query is billed on a pay-per-query basis. If
the cost of model stealing is higher than that
of model training (including training data
collection), there is no motivation for the
attacker to steal models. Most state-of-the-art
strategies can meet a realistic query budget.
In comparison, StealNN [4] needs more que-
ries than others.

State-of-the-Art Defense Approaches

Defense Approaches

In this section, we introduce two categories of
state-of-the-art countermeasures against model
extraction attacks: defending by output perturba-
tion (i.e., injecting special perturbations to model
predictions) and detecting by observing the que-
ries (i.e., monitoring the user-server streams and
generating a warning if malicious behaviors are
detected). Furthermore, we give a comprehensive
comparison of these defense approaches.

Defense by Output Perturbation: Since the
attackers need certain information (e.g., predic-
tion labels and confidence scores) to steal the vic-
tim model, the cloud service provider can defend
their models by reducing or obfuscating the infor-
mation provided by APIs.

Lee et al. proposed Deceptive Perturbations
[10], which perturb the softmax activation func-
tion that produces the confidence scores such
that the parameters are hidden from the attack-
er. Specifically, original responses are altered
by adding perturbations using Reverse Sigmoid
[10] with a sum-to-one normalizer. However, the
top-1 labels are not tampered with; thus, some
extraction attacks that work only with prediction
labels are still effective [5, 7].

To address this problem, Orekondy et al. pro-
posed Prediction Poisoning [11], a utility-con-

strained defense framework that satisfies both
privacy and utility objectives via perturbing the
predictions. The perturbations maximize the angu-
lar deviation between the gradient of the poi-
soned posteriors and that of the original model. A
tunable parameter is used to balance the security
and the prediction accuracy. However, this meth-
od requires a lot of gradient calculations, which
results in high computational costs and increases
inference delays by several orders of magnitude.

BDPL uses differential privacy to perturb the
output [12]. A boundary differential privacy layer
is added to obfuscate the responses of queries
around the decision boundary. Specifically, BDPL
identifies whether a query is sensitive by checking
the corner points with a given radius to the query
on all dimensions. If there is a flipping point with-
in the ball centered at the query with the given
radius, the current query is identified as sensitive.
Then the defender will return obfuscated respons-
es using the boundary randomized response algo-
rithm controlled by the privacy budget.

The perturbation strategy is an active defense
strategy, which does not differentiate potential
attackers from benign clients. Therefore, the utility
of the cloud-based models may be affected due
to perturbations.

Detection by Observing Queries: Apart from
reducing the information returned to the attack-
er, the cloud service provider may detect poten-
tial attacks by observing queries from the clients.
Such a passive defense strategy will not impair the
utility of cloud-based models.

Kesarwani et al. proposed Extraction Warning
[13] to discover potential extraction attacks and
issue extraction status warnings. The model owner
needs to set an extraction threshold, and an alarm
will be issued whenever the extraction threshold
is hit. To measure the knowledge gained by the
adversary, two methods are designed. The first
approach measures the total information gain
by training and updating a local proxy model
for each client to estimate the information gain
concerning a given validation set, which is com-
putationally expensive. The second method is to
maintain compact query summaries [13] for each
client and computes the feature space covered by
the client’s queries.

Forgotten Siblings [14] applies closeness-to-the-
boundary (a concept from digital watermarking)
to reveal extraction attacks against decision trees.
Since adversaries usually use the queries around

Figure 2. Defense strategy using the closeness-to-the-boundary concept.

IEEE Communications Magazine • December 20206

the decision boundary, the defender can identify
malicious queries by tracking the closeness of the
user’s queries to the class boundary. Forgotten
Siblings defines the security margins alongside the
decision tree boundary using the statistical dis-
tribution of the training data, as shown in Fig. 2.
Every submitted query is determined to be within
the margin or not. Subsequently, the average ratio
between the queries inside and outside the mar-
gin for all leaves is calculated. If the query ratio
exceeds the threshold, the current query will be
identified as a malicious query (red square).

However, the above two schemes only work
on the cloud-based models with linearly separated
prediction classes (e.g., decision trees) but do not
work for complicated models like DNNs. In addi-
tion, false alarms may be raised as a benign client
may also explore vast areas of the input spaces.

PRADA [5] was proposed to detect attacks
against any cloud-based ML models. It is based
on the assumption that the distances between
queries used by the attacker are usually artificially
controlled, and thus will deviate from a normal
(Gaussian) distribution. Given a detection thresh-
old, a domain-specific distance metric is used
to compute distances between queries. PRADA
keeps track of the minimum distance between a
new input sample and all previous samples in the
same class to model the distribution of queries.
The Shapiro-Wilk test statistic is used to quanti-
fy if the distribution of the current queries fits a
normal distribution. An attack is considered to
occur if the Shapiro-Wilk test statistic is below the
threshold. However, PRADA may not work if the
adversary adds dummy queries to fit a normal dis-
tribution.

Comprehensive Comparison of Defenses

A comparison of the defense approaches is given
in Table 3.
•	 Defense effectiveness. The defense effective-

ness describes whether a defending meth-
od is useful when defending against model
extraction attacks. There are no unified met-
rics to measure the defense effectiveness
of all approaches for several reasons. The
source codes of most defending approaches
are not open. Different defending schemes
focus on different metrics, such as accu-
racy drop in Deceptive Perturbations [10]

and Prediction Poisoning [11], extraction
rate drop in BDPL [12], FPR in PRADA [5],
fraction of successfully extracted leaves p in
Forgotten Siblings [14]. Moreover, different
detection defense strategies target different
models; for example, DNN in PRADA [5],
Deceptive Perturbations [10], Prediction Poi-
soning [11], and BDPL [12], and decision
trees in Extraction Warning [13] and Forgot-
ten Siblings [14].

•	 Apply for DNN. Since most of the current
cloud-based models are DNNs, developing
strategies to resist DNN model extraction
attacks is increasingly essential for cloud ser-
vice providers. Except for Extraction Warning
[13] and Forgotten Siblings [14], which are
designed for decision trees, we can see that
most defense approaches can apply to com-
plex DNN models.

•	 Colluding attacker defense. Defending
against collusion attacks is critical for cloud
service providers. An attacker may distribute
his/her carefully crafted queries to colluding
partners so that the statistics of queries of
each malicious client is below the alarming
threshold. Therefore, the attacker can evade
the defending strategy. In Table 3, we can
see that only Extraction Warning [13] among
all the defense works has considered this
issue.

Performance Evaluation
To evaluate the performance of different model
extraction attacks, we conduct experiments on
StealML [2], PRADA [5], and KnockoffNets [7]
in terms of attack effectiveness. We use two
evaluation metrics: absolute accuracy and rela-
tive accuracy. Absolute accuracy is the prediction
accuracy of the extracted substitute model. Rela-
tive accuracy is the relative prediction accuracy of
the extracted model compared to the prediction
accuracy of the cloud-based model. Following
[1, 5], we have established a black-box model on
the MNIST dataset (2828) with LeNet structure
(two convolution layers with pooling and two fully
connected layers), and its accuracy is 99.47 per-
cent. The learning rates of StealML [2], PRADA
[5], and KnockoffNets [7] are all set as 0.01. We
set the batch size of StealML [2] as 20, PRADA
[5] as 50, and KnockoffNets [7] as 8. In the exper-

Table 3. Comparison of state-of-the-art model extraction defenses.

Method Defense type Defense effectiveness Apply for DNN Defend colluding attackers

Deceptive Perturbations [10] Output perturbation Accuracy drop1 more than 20% YES NO

Prediction Poisoning [11] Output perturbation Accuracy drop more than 20% YES NO

BDPL [12] Output perturbation Extraction rate2 drop up to 12% YES NO

PRADA [5] Query observation Nearly 0.0% FPR3 YES NO

Extraction Warning [13] Query observation Most extraction rates exceed threshold4 NO YES

Forgotten Siblings [14] Query observation nearly 0.11 p5 NO NO

1 Accuracy drop measures the accuracy decrease of the substitute model before and after applying the defense strategy.
2 Extraction rate measures the proportion of matching predictions: given the same input, the substitute model and the cloud-based model have the same output.
3 FPR evaluates the ratio of false alarms to all query sequences.
4 Extraction rate measures the knowledge learned by clients. A warning is issued if the extraction rate exceeds a predestined threshold.
5 The metric p denotes the fraction of successfully extracted leaves, which is used to determine the knowledge gain by the attacker. (The lower the value, the more effective the
defense. p = 1 denotes 100% attack success rate.)

IEEE Communications Magazine • December 2020 7

iments, the total number of queries to the cloud
APIs is 10,000. StealML [2] and PRADA [5] use
the crafted query samples, and KnockoffNets [7]
uses the EMNIST Letters as the query dataset. All
experiments are carried out on a machine with
an Intel Core CPU with 6-core operating at 3.70
GHz and equipped with 64 GB RAM, running a
Linux 4.15.0 operating system.

The evaluation results are shown in Fig. 3. We
can see that both KnockoffNets [7] and PRADA
[5] achieve a higher relative accuracy than
StealML [2]. The possible reason is that StealML
[2] only works on shallow neural networks (i.e.,
with only one hidden layer), while LeNet-5 struc-
ture is used in the experiments. Furthermore,
since KnockoffNets [7] uses EMNIST as the query
samples, which consists of handwritten character
digits, it performs slightly better than PRADA [5].

As mentioned above, we cannot compare all
the defenses’ work in a fair way due to the lack
of source codes and unified metrics. Therefore,
we make analyses in a qualitative way according
to their original contexts and conduct part of the
experiments. We present the comparison results
in the third column of Table 3. We conduct the
experiments on PRADA [5] and Forgotten Sib-
lings [14] with their open source codes. Following
the same settings of [5], we protect the MNIST
LeNet-5 model from StealML [2] attacks and set
the threshold as 0.90. The experiment results
have demonstrated the effectiveness of PRADA
that produced nearly 0.0 percent (FPR false pos-
itive rate). Similarly, following [14], we protect a
pre-trained model (trained with the Wine Quali-
ty dataset) from StealML [2] attacks, and set the
threshold as 0.3. The experiments have shown
that the fraction of successfully extracted leaves
p is only 0.11, which confirms the effectiveness of
the defense strategy.

Future Research Directions

Potential Research Directions on Attacks

From the perspective of attacks, there are three
aspects worth further exploring.

First, most of the existing model extraction
attacks focus on attribute extraction, and existing
functionality extraction strategies are not ideal.
KnockoffNets [7] is effective to steal simple DNN
architectures, but also requires access to large
amounts of related public datasets that serve as
the transfer dataset to construct substitute models
that are highly similar to the original cloud-based
models. Therefore, how to design a functionality
extraction algorithm that depends less on pub-
lic datasets but can still achieve high accuracy of
the substitute model needs to be studied in the
future.

Second, the attacks are significantly less effec-
tive with less information; for example, the accu-
racy of the substitute model will drop rapidly as
there are fewer returned top-k labels (a smaller k)
in KnockoffNets attacks [7]. This problem is espe-
cially severe for complex DNNs. How to main-
tain/increase the capability of model extraction
attacks when cloud APIs only return the label with
the highest confidence score is a problem worth
studying.

Finally, existing model extraction approaches
mainly work on stealing DNN models with rela-

tively simple structures [3, 5, 6]. When stealing
real-world APIs with millions of parameters, such
approaches may not achieve satisfying results.
How to design an effective attacking strategy in
terms of stealing sophisticated cloud-based DNNs
is a possible future research direction.

Potential Research Directions on Defenses

From the perspective of defenses, we highlight
four aspects.

First, the adversary may evade the detection
using some special techniques. For instance, the
adversary can make dummy queries, which are
not used to build the substitute model but can
mimic the query distribution of benign clients [5],
or use samples with lower information gains and
limited coverage of feature space [13]. How to
effectively detect model extraction attacks fac-
ing these more intelligent attacks needs further
research.

Second, state-of-the-art defending approach-
es based on perturbing prediction results usually
sacrifice the utility to achieve the security target
[11]. As the perturbation increases, the model
prediction accuracy deteriorates, and the security
level increases. However, even a slight decrease
in performance may make commercial cloud-
based models lose competitive advantage. How
to effectively protect cloud-based models while
maintaining its utility should also be considered.

Third, when considering attacks under federat-
ed learning or the blockchain scenario, we think
the cloud provider can employ the differential pri-
vacy technique and encrypt the trained model
aiming to prevent the attackers from extracting
the model or inferring original training data via
reverse engineering.

Last but not least, recent studies have shown
that the strategies of side-channel attacks can be
applied to model extraction attacks (e.g., timing
side-channel [4] and electromagnetic side-chan-
nel [15]). Both can achieve a high attack success
rate. However, there are no defending strategies
designed for these kinds of model extraction
attacks. It should be an important direction for

Figure 3. Performance comparison of state-of-the-art model extraction attacks.

IEEE Communications Magazine • December 20208

future investigation.

Conclusion
Model extraction attacks on cloud-based MLaaS
services pose serious security issues. In this article,
we provide a comprehensive summary of existing
methods of model extraction attacks and possi-
ble defenses. We review the latest research find-
ings, compare advantages and disadvantages of
different approaches, and conduct experimental
evaluations of representative attack and defense
methods. Finally, we highlight potential directions
that are worth exploring to further propel the
research in this field.

References
[1] N. Papernot et al., “Practical Black-Box Attacks Against

Machine Learning,” ACM on Asia Conf. Computer and Com-
mun. Security, 2017, pp. 506–19.

[2] F. Tramér et al., “Stealing Machine Learning Models Via
Prediction Apis,” 25th USENIX Security Symp., 2016, pp.
601–18.

[3] B. Wang and N. Z. Gong, “Stealing Hyperparameters in
Machine Learning,” IEEE Symp. Security and Privacy, 2018,
pp. 36–52.

[4] V. Duddu et al., “Stealing Neural Networks Via Timing Side
Channels,” arXiv preprint arXiv:1812.11720, 2018.

[5] M. Juuti et al., “Prada: Protecting Against DNN Model Steal-
ing Attacks,” IEEE Euro. Symp. Security and Privacy, 2019,
pp. 512–27.

[6] Y. Shi, Y. Sagduyu, and A. Grushin, “How to Steal a Machine
Learning Classifier With Deep Learning,” IEEE Int’l. Symp.
Technologies for Homeland Security, 2017, pp. 1–5.

[7] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff Nets: Steal-
ing Functionality of Black-Box Models,” IEEE Conf. Computer
Vision and Pattern Recognition, 2019, pp. 4954–63.

[8] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduc-
tion to Linear Regression Analysis, Wiley, 2012, vol. 821.

[9] A. Salem et al., “Ml-Leaks: Model and Data Independent
Membership Inference Attacks and Defenses on Machine
Learning Models,” 26th Annual Network and Distributed
System Security Symp., The Internet Society, 2019.

[10] T. Lee et al., “Defending Against Neural Network Model
Stealing Attacks Using Deceptive Perturbations,” IEEE Securi-
ty and Privacy Wksps., 2019, pp. 43–49.

[11] T. Orekondy, B. Schiele, and M. Fritz, “Prediction Poison-
ing: Utilityconstrained Defenses Against Model Stealing
Attacks,” arXiv preprint arXiv:1906.10908, 2019.

[12] H. Zheng et al., “BDPL: A Boundary Differentially Private
Layer Against Machine Learning Model Extraction Attacks,”
Euro. Symp. Research in Computer Security, Springer, 2019,
pp. 66–83.

[13] M. Kesarwani et al., “Model Extraction Warning in Mlaas
Paradigm,” 34th Annual Computer Security Applications
Conf., ACM, 2018, pp. 371–80.

[14] E. Quiring, D. Arp, and K. Rieck, “Forgotten Siblings:
Unifying Attacks on Machine Learning and Digital Water-
marking,” IEEE Euro. Symp. Security and Privacy, 2018, pp.
488–502.

[15] L. Batina et al., “CSI NN: Reverse Engineering of Neural
Network Architectures Through Electromagnetic Side Chan-
nel,” 28th USENIX Security Symp, 2019, pp. 515–32.

Biographies
Xueluan Gong (xueluangong@whu.edu.cn) received her B.S.
degree in computer science and electronic engineering from
Hunan University in 2018. She is currently pursuing a Ph.D.
degree in computer science with Wuhan University, China. Her
research interests include network security, AI security, and data
mining.

Yanjiao Chen (chenyanjiao@whu.edu.cn) received her B.E.
degree in electronic engineering from Tsinghua University in
2010 and her Ph.D. degree in computer science and engineer-
ing from Hong Kong University of Science and Technology in
2015. She is currently a professor at Wuhan University, China.
Her research interests include network economics, network
security, and quality of experience of multimedia delivery/dis-
tribution.

Qian Wang [SM] (qianwang@whu.edu.cn) is a professor with
the School of Cyber Science and Engineering, Wuhan Universi-
ty. He received his Ph.D. degree from Illinois Institute of Tech-

nology. His research interests include AI security, data storage,
search and computation outsourcing security and privacy, wire-
less system security, big data security and privacy, applied cryp-
tography, and so on. He received the National Science Fund for
Excellent Young Scholars of China award in 2018. He is also an
expert under the National “1000 Young Talents Program” of
China. He is a recipient of the 2018 IEEE TCSC Award for Excel-
lence in Scalable Computing for Early Career Researcher and
also the 2016 IEEE Asia-Pacific Outstanding Young Researcher
Award. He serves as an Associate Editor for IEEE Transactions
on Dependable and Secure Computing and IEEE Transactions
on Information Forensics and Security. He is a member of ACM.

Wang Yang (yang_nsme@whu.edu.cn) is currently pursuing a
Bachelor’s degree in computer science at Wuhan University,
China. His research interests include information security and
AI security.

Xinchang Jiang (xinchangjiang@whu.edu.cn) is currently pur-
suing a Bachelor’s degree in computer science at Wuhan Uni-
versity. Her research interests include information security and
AI security.

Recent studies have

shown that the strat-

egies of side-channel

attacks can be applied

to model extraction

attacks, e.g., timing

side-channel and elec-

tromagnetic side-chan-

nel. Both can achieve

a high attack success

rate. However, there is

no defending strategies

designed for such kind

of model extraction

attacks.

